Math 40 Exam 6: Chapters 6 and 7 Solutions

1. (12 points) Write without negative exponents and simplify.
(a) $\left(\frac{3}{x}\right)^{-4}$ Solution: $\frac{x^{4}}{81}$
(b) $\frac{2 y^{-4}}{x^{-3}}$ Solution: $\frac{2 x^{3}}{y^{4}}$
(c) $\frac{3 t^{2}\left(2 t^{-3}\right)^{-2}}{3 t^{-3}}$. Solution: $\frac{t^{11}}{4}$
2. (12 points) Write each power in radical form.
(a) $(12 d)^{2 / 3}$ Solution: Any of these: $\sqrt[3]{(12 d)^{2}}=(\sqrt[3]{12 d})^{2}=\sqrt[3]{144 d^{2}}$
(b) $\left(9-4 x^{2}\right)^{0.5}$ Solution: $\sqrt{9-4 x^{2}}$
3. (10 points) Write each radical as a power with a fractional exponent.
(a) $x \sqrt[3]{x}$ Solution: $x^{4 / 3}$
(b) $\frac{1}{\sqrt[3]{x^{2}}}$ Solution: $x^{-2 / 3}$
4. (16 points) The heron population of Saltmarsh Refuge is estimated by conservationists at

$$
P(t)=400 t^{-1 / 3}
$$

where t is the number of year since the refuge was established in 2000 .
(a) Complete the table

Solution: | t | 0.001 | 1 | 8 | 27 | 64 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $P(t)$ | 4000 | 400 | 200 | 133 | 100 | .

(b) Sketch a graph for the function for $0 \leq t \leq 64$

(c) Approximately how many heron were there in 2012 ?

From the graph, this number is approximately 170 . We can evaluate the function to be more sure: $P(12)=400(12)^{-1 / 3}=\frac{400}{\sqrt[3]{12}} \approx \frac{400}{2.894} \approx 175$
(d) In what year will there be only 10 heron left?

Solution: $P(t)=10 \Leftrightarrow 400 t^{-1 / 3}=10 \Leftrightarrow \sqrt[3]{t}=40 \Leftrightarrow t=40^{3}=64000$ which corresponds to the year 68000. Hey, it's just around the corner.
5. (12 points) Write an equation for the circle
(a) with radius 2 and center $(1,3)$.
$(x-1)^{2}+(y-3)^{2}=4$
(b) centered at $(4,5)$ and passing through $(1,2)$.

The square of the radius is $(4-1)^{2}+(5-2)^{2}=18$, so the equation is $(x-4)^{2}+(y-5)^{2}=18$
(c) with diameter from $(-3,2)$ to $(5,4)$.

The center is at $\left(\frac{-3+5}{2}, \frac{2+4}{2}\right)=(1,3)$ and the square of the radius is $(5-1)^{2}+(4-3)^{2}=17$ so the equation is $(x-1)^{2}+(y-3)^{2}=17$.
6. (12 points) Find the logarithm.
(a) $\log _{2} 64$ Solution: $\log _{2} 64=6 \Leftrightarrow 2^{6}=64$
(b) $\log _{3} \frac{1}{27}$ Solution: ; $\log _{3} \frac{1}{27}=-3 \Leftrightarrow 3^{-3}=\frac{1}{27}$
7. (12 points) Solve for the unknown value.
(a) $\log _{2}(1-2 x)=4$ Solution: $\log _{2}(1-2 x)=4 \Leftrightarrow(1-2 x)=2^{4} \Leftrightarrow 2 x=-15 \Leftrightarrow x=-\frac{15}{2}$
(b) $6 \cdot 10^{2.07 x}=216$ Solution: $6 \cdot 10^{2.07 x}=216 \Leftrightarrow 10^{2.07 x}=36 \Leftrightarrow 2.07 x=\log (36) \Leftrightarrow x=\frac{\log (36)}{2.07} \approx$ 0.7943
(c) $105=\frac{1}{3}\left(10^{0.5 x}-1\right)$ Solution: $105=\frac{1}{3}\left(10^{0.5 x}-1\right) \Leftrightarrow\left(10^{0.5 x}-1\right)=316 \Leftrightarrow 0.5 x=\log (316) \Leftrightarrow$ $x=2(2.4997 \approx 4.9994$
8. (14 points) A obsessive saver puts 2Φ in a box on the first day of the month of January, $4 \oplus$ on the second day, 8Φ on the third day, and keeps doubling the number of cents she puts in the box for every day of the month thereafter.
(a) Make a table of the number cents she puts in the box each day for the first week.

(b) Write a function which gives the number of cents she puts in the box on the nth day.

Solution: $\quad A(n)=2^{n}$
(c) How much money did she put in the box on the 15 th day of the month.

Solution: $A(15)=2^{15}=32768$
(d) What if she had deposited the money in an account bearing 5% daily interest? How much money would she have at the end of the first week? You can write this as a sum, but you don't have to compute the sum.
Solution: The original 2Φ earns 6 day's interest, so it will be worth $2 \cdot(1.05)^{6} \Phi$. Similarly, the $4 ¢$ of day 2 will earn 5 day's interest and be worth $2 \cdot(1.05)^{5} \Phi$, and so on, for a total of $2 \cdot(1.05)^{6}+4 \cdot(1.05)^{5}+8 \cdot(1.05)^{4}+16 \cdot(1.05)^{3}+32 \cdot(1.05)^{2}+64 \cdot(1.05)+128 \approx 2.68+5.105+$ $9.724+18.522+35.28+67.2+128 \approx 266.5$ ¢ .

