
Back to Title Page Previous Entry Next Entry→

July 4

Well, I’ve taken time out to watch the French film, “Chaos,” about Algerian immigrants. Pretty
good. Now, a dormir.

COLOR.

Yeah! De Colores!

This is a topic of some continual confusion, at least for me. Let’s start with the idea of “primary
colors.” At http://www.liquisoft.com/colortheory.html , I read about the “color wheel”:

Primary Colors: Red, Yellow, Blue. These 3 colors are the base colors for every other color on the color wheel. This is
why they're called "primary." When you mix two primaries together, you get a secondary color.
Also note the triangular positioning of the primary colors on the color wheel, and how the secondary colors are next to
them.
Primary colors are useful for designs or art that needs to have a sense of urgency. Primary colors are the most vivid colors
when placed next to eachother, which is why you'll notice that most fast food joints use primary colors in their logos, as it
evokes speed.

The same web site gives a nice, brief description of RGB color:

RGB Color: This is color based upon light. Your computer monitor and television use RGB. The name "RGB" stands for
Red, Green, Blue, which are the 3 primaries (with green replacing yellow). By combining these 3 colors, any other color
can be produced. Remember, this color method is only used with light sources; it does not apply to printing.

The difference between the color wheel and RGB seems to be pigment vs. light. When all
pigments are mixed together, you get black. When all light wave frequencies are combined (in
equal measure, I guess) you get white. That’s a significant difference!

Wikipedia is an online collaborative
encyclopedia with some really good stuff.
At http://en.wikipedia.org/wiki/Color_theory
you find all sorts of color wheels. The RYB
(pigment) color wheel is shown with this
lovely wheel showing 30 degree increments
with secondary and tertiary colors.

http://www.liquisoft.com/colortheory.html
http://en.wikipedia.org/wiki/Color_theory

Then there’s the rgb picture.
The Wikipedia site with perfect 411 on
this stuff. For instance, all the links
below are very informative (stuff like
the hex code of cyan is #00FFFF): “An
additive color system involves light
emitted directly from a source or
illuminant of some sort. The additive
reproduction process usually uses red,
green and blue light to produce the other
colors. Combining one of these additive
primary colors with another in equal
amounts produces the additive
secondary colors cyan, magenta, and
yellow. Combining all three primary
colors in equal intensities produces
white. Varying the luminosity of each
light eventually reveals the full gamut of
those 3 lights.

The 411 on how inkjet printers color has
to do with the cmy wheel whose
singularity at the center is striking!

“For printing purposes, the colors used
are cyan, magenta, and yellow; this
model is called the "CMY model". In
the CMY model, black is created by
mixing all colors, and white is the
absence of any colors (assuming white
paper). As colors are subtracted to
produce black, this is also called the
subtractive color model. A mix of Cyan,
Magenta, and Yellow actually gives a
muddy black so normally true black ink
is used as well; when black is added,
this color model is called the "CMYK
model." More recently, it has been
shown that the CMY color model is also
more accurate for pigment-mixing.”

http://en.wikipedia.org/wiki/RGB_color_model seems a pretty good straight source of info on
the RGB model that OpenGl uses. Angel talks about parameters being floats in the range from
0.0 to 1.0 so that (1.0, 1.0, 1.0) is white, (1.0, 0.0, 0.0) is red and so forth. There is also RGBA

http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Red
http://en.wikipedia.org/wiki/Green
http://en.wikipedia.org/wiki/Blue
http://en.wikipedia.org/wiki/Primary_color
http://en.wikipedia.org/wiki/Secondary_color
http://en.wikipedia.org/wiki/Cyan
http://en.wikipedia.org/wiki/Magenta
http://en.wikipedia.org/wiki/Yellow
http://en.wikipedia.org/wiki/White
http://en.wikipedia.org/wiki/Luminosity
http://en.wikipedia.org/wiki/Gamut
http://en.wikipedia.org/wiki/Cyan
http://en.wikipedia.org/wiki/Magenta
http://en.wikipedia.org/wiki/Yellow
http://en.wikipedia.org/wiki/CMYK_color_model
http://en.wikipedia.org/wiki/Subtractive_color
http://en.wikipedia.org/wiki/RGB_color_model

mode, whose fourth parameter A (alpha) is for opacity (the default opacity value 1.0 is used if it
is not specified). ALERT: The color precision of the display system may be less than that used
to specify a color in glColor*().

The default background color is black (0.0,0.0,0.0) and the default drawing color is white (1.0,
1.0, 1.0), but these can be adjusted using

void glColor3{b i f d ub us ui}(TYPE r, TYPE g, TYPE b)
void glColor3{b i f d ub us ui}v(TYPE *color)
void glColor3{b i f d ub us ui}(TYPE r, TYPE g, TYPE b, TYPE a)
void glColor3{b i f d ub us ui}v(TYPE *color)

and
 void glClearColor(GLclampf r, GLclampf g, GLclampf b, GLclampf a)
specifies the color to clear with…with which to clear.

Specifying the drawing and clearing colors sets the current “color state.” The color used to
render an geometric object is the current drawing color. Binding colors to objects must be done
with care, it seems.

DIMENSIONS
In OpenGL, 2D objects like the white square in the simple program of yesterday are actually 4D
objects with the third (z) coordinate set to 0. Never mind about the 4th dimension for now. To
simplify matters at first, well just draw to a rectangular canvas and not worry about the
perspective of the virtual camera.

To create such a canvas (called the clipping window,) use
 void gluOrtho2D(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top)
Note that this function is in the glu library because it is a special case of the more general #D
function glOrtho().

You can draw outside the clipping window, but it will be “clipped out.” ;-b

SUBWINDOWS
These are actually called viewports. They’re little rectangular subsets of the clipping window-
say a menu or whatever.

COORDINATES
There are the coordinates intrinsic to the window (called window or screen coordinates,) which
is a simple count of pixels from the left (x) and pixels down from the top (y), but you can, of
course, rescale to any coordinates you’d like, OpenGL will automatically convert to screen
coordinates somehow. You need to know the size of the display window on the screen
(glutInitWindowSize()) and how much the user wishes to display (gluOrtho2D()).

You need two matrices to perform the coordinate transformations in OpenGL: model-view and
projection matrices. Hang on, we’ll tackle these in detail soon enough. For now, be aware that

gluOrtho2D() is used to set the projection matrix in the simple program we have so far. For
example, to set up a two-dimensional licpping window with lower left corner (-1.0, -1.0) and
upper right corner (1.0, 1.0), we can execute the functions

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(-1.0,-1.0,1.0,1.0);

Let’s experiment with the new ideas so far. So I enter this code:
/* simple02 - From Angel's OpenGL Primer */

#include <GL/glut.h> // This includes gl.h and glu.h

void display() {
 //clear window
 glClear(GL_COLOR_BUFFER_BIT);

 // draw unit square polygon
 glBegin(GL_POLYGON);
 glVertex2f(-0.5,-0.5);
 glVertex2f(-0.5,0.5);
 glVertex2f(0.5,0.5);
 glVertex2f(0.5,-0.5);
 glEnd();

 //flush GL buffers
 glFlush();
}

void init() {
 //set clear color to black
 glClearColor(0.0,0.0,0.0,0.0);

 //set fill color to white
 glColor3f(1.0,1.0,1.0);

 //set standard orthogonal (look straight at) clipping view
 //with cube of edge 2 centered at origin (default-could be omitted)

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D(-1.0,1.0,-1.0,1.0);
}

int main(int argc, char** argv) {

 //init mode and open window in upper-left corner
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize(500,500);
 glutInitWindowPosition(0,0);
 glutCreateWindow("thimple");
 glutDisplayFunc(display);
 init();

 glutMainLoop();
}

Boring, but it does illustrate the major components of the
programs we’ll be writing.

1. There’s a main() function to initialize GLUT, put a
window on the screen and , identify the callback
functions and enter the main loop.

2. An init() function to set state variables to initial
values.

3. A display callback display() that describes the
objects to display.

4. Other callbacks? We’ll see how to deal with events
soon enough.

The main() program in this model never needs to change much, depending on which
callbacks and menus are needed for an application. The init() allows for a lot of
detailed state information and desired parameters in one place, separate from the
geometry (which is in the display callback) and from dynamics of animation and
interaction (in the callbacks.)

