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The well known Catalan numbers Cn are named after Belgian mathematician Eugene
Charles Catalan (1814–1894), who found them in his investigation of well-formed
sequences of left and right parentheses. As Martin Gardner (1914–2010) wrote in
Scientific American [2], they have the propensity to “pop up in numerous and quite
unexpected places.” They occur, for example, in the study of triangulations of con-
vex polygons, planted trivalent binary trees, and the moves of a rook on a chessboard
[1, 2, 3, 4, 6].

The Catalan numbers Cn are often defined by the explicit formula Cn =
1

n+1

(2n
n

)
,

where n ≥ 0 [1, 4, 6]. Since (n + 1) |
(2n

n

)
, it follows that every Catalan number is a

positive integer. The first five Catalan numbers are 1, 1, 2, 5, and 14. Catalan num-
bers can also be defined by the recurrence relation Cn+1 =

4n+2
n+2 Cn , where C0 = 1. So

lim
n→∞

Cn+1
Cn
= 4.

Here we study the convergence of the series
∑
∞

n=0
1

Cn
and evaluate the sum. Since

lim
n→∞

Cn+1
Cn
= 4, the ratio test implies that the series

∑
∞

n=0
xn

Cn
converges for |x | < 4.

Consequently, the series
∑
∞

n=0
1

Cn
converges. We evaluate this infinite sum using gen-

erating functions, plus fundamental tools from the differential and integral calculus.

Sum of the series
∞∑

n=0

1
Cn

To this end, let f (x) be the generating function of the reciprocals of Catalan numbers,
f (x) =

∑
∞

n=0
xn

Cn
. We compute the sum in three steps. First, we find an ordinary dif-
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ferential equation satisfied by f (x), then, after solving the differential equation in the
interval (0, 4), we compute f (1).

We first rewrite f (x) as f (x) = 1+
∑
∞

n=1
xn

Cn
. So

f ′(x) =
∞∑

n=1

nxn−1

Cn
=

∞∑
n=0

n + 1

Cn+1
xn.

Since n+2
Cn
=

4n+2
Cn+1

, by the recurrence relation, this yields

∞∑
n=0

n + 2

Cn
xn
=

∞∑
n=0

4n + 2

Cn+1
xn,

∞∑
n=0

n

Cn
xn
+ 2

∞∑
n=0

xn

Cn
=

∞∑
n=0

4(n + 1)

Cn+1
xn
− 2

∞∑
n=0

xn

Cn+1
,

x f ′(x)+ 2 f (x) = 4 f ′(x)−
2

x
[ f (x)− 1],

x(x − 4) f ′(x)+ (2x + 2) f (x) = 2. (1)

This is a first-order differential equation for f (x) with the initial conditions f (0) =
1 = f ′(0).

To facilitate solving (1) for x 6= 0, we introduce the function g(x) =
∣∣ 4−x

x

∣∣3/2. Then
g′(x)
g(x) =

−6
x(4−x) . This implies that

[x(x − 4)g(x)]′ = (2x + 2)g(x). (2)

Multiplying (1) by g(x), we get

x(x − 4) f ′(x)g(x)+ (2x + 2) f (x)g(x) = 2g(x).

Using (2), this can be rewritten as

[x(x − 4) f (x)g(x)]′ = 2g(x).

But, again using (2),

{x(x − 4)[ f (x)− 1]g(x)}′ = [x(x − 4) f (x)g(x)]′ − [x(x − 4)g(x)]′

= 2g(x)− (2x + 2)g(x)

= −2xg(x),

consequently,

x(x − 4)[ f (x)− 1]g(x) = −2
∫

xg(x) dx + C1

f (x) = 1+
2
∫

xg(x) dx − C1

x(4− x)g(x)
,

where C1 is a constant.
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Suppose 0 < x < 4. Then

∫
xg(x) dx =

∫
x

(
4− x

x

)3/2

dx

=

∫
(4− x)3/2

x1/2
dx .

Letting x = u2, this implies that

∫
xg(x) dx = 2

∫
(4− u2)3/2 du

=
1

2
u(4− u2)3/2 + 3u(4− u2)1/2 + 12 arcsin

u

2
+ C2

=
1

2

√
x(4− x)3/2 + 3

√
x(4− x)1/2 + 12 arcsin

√
x

2
+ C2,

where C2 is another constant. Therefore, we have

f (x) = 1+

√
x(4− x)3/2 + 6

√
x(4− x)1/2 + 24 arcsin

√
x

2 + 2C2 − C1

x(4− x)
(

4−x
x

)3/2

= 1+
x(4− x)3/2 + 6x(4− x)1/2 + 24

√
x arcsin

√
x

2 + C
√

x

(4− x)5/2
,

where C = 2C2 − C1. Since f (0) = 1 = f ′(0), C = 0. Thus

f (x) = 1+
x(4− x)3/2 + 6x(4− x)1/2 + 24

√
x arcsin

√
x

2

(4− x)5/2
=

∞∑
n=0

xn

Cn
.

When x = 1, this yields

∞∑
n=0

1

Cn
= 1+

33/2
+ 6 · 31/2

+ 24 arcsin 1/2

35/2

= 2+
4
√

3

27
π. (3)

Thus, the series
∑
∞

n=0
1

Cn
converges to the limit 2 + 4

√
3

27 π , which is approximately

2.80613305077. Note that already
∑22

n=0
1

Cn
≈ 2.80613305077; so the series converges

to the limit remarkably fast.
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Additional consequences of the differential equation
Letting x = 1 in (1), we get

3 f ′(1) = 4 f (1)− 2

= 4

(
2+

4
√

3

27
π

)
− 2

f ′(1) = 2+
16
√

3

81
π.

Since f ′(x) =
∑
∞

n=0
n+1

Cn+1
xn , it follows that

∞∑
n=0

n + 1

Cn+1
= 2+

16
√

3

81
π.

Since the differential equation is infinitely differentiable, it follows from (1) that

x(x − 4) f ′′(x)+ (4x − 2) f ′(x)+ 2 f (x) = 0. (4)

This yields 3 f ′′(1) = 2 f ′(1)+ 2 f (1), so f ′′(1) = 8
3 +

56
√

3
243 π . Since

f ′′(x) =
∞∑

n=0

(n + 1)(n + 2)

Cn+2
xn,

this implies that

∞∑
n=0

(n + 1)(n + 2)

Cn+2
=

8

3
+

56
√

3

243
π.

Differentiating (4) with respect to x , it follows similarly that f ′′′(1) = 2 f ′(1), so

∞∑
n=0

(n + 1)(n + 2)(n + 3)

Cn+3
= 4+

32
√

3

81
π.

Clearly, this technique can be employed to evaluate further sums of the form

∞∑
n=0

(n + 1)(n + 2) · · · (n + k)

Cn+k
,

where k ≥ 1.
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Sum of the series
∞∑

n=0

(−1)n

Cn

We now turn to to solving (1) for −4 < x < 0. We have∫
xg(x) dx =

∫
x

∣∣∣∣4− x

x

∣∣∣∣3/2 dx

= −

∫
(4− x)3/2
√

x
dx .

Letting x = −u2, this gives∫
xg(x) dx = −

∫
(u2
+ 4)3/2

u
(−2u) du

= 2
∫
(u2
+ 4)3/2 du

= 2

[
u(u2
+ 4)3/2

4
+

3

2
u
√

u2 + 4+ 6 ln
∣∣∣u +√u2 + 4

∣∣∣]+ C3

=
1

2
u(u2
+ 4)3/2 + 3u

√
u2 + 4+ 12 ln

∣∣∣u +√u2 + 4
∣∣∣+ C3

=
1

2

√
|x |(4− x)3/2 + 3

√
|x |(4− x)+ 12 ln

(√
|x | +

√
|4− x |

)
+ C3,

where C3 is a constant.
Consequently, as before, we have

f (x) = 1+

√
|x |(4− x)3/2 + 6

√
|x |(4− x)+ 24 ln

(√
|x |+
√
|4−x |

C4

)
x(4− x)

∣∣ 4−x
x

∣∣3/2
= 1−

|x |(4− x)3/2 + 6
√
|x |(4− x)+ 24

√
|x | ln

(√
−x+
√

4−x
C4

)
(4− x)5/2

.

where C4 is a nonzero constant. Since f (0) = 1 = f ′(0), C4 = 2. Thus

f (x) = 1−
|x |(4− x)3/2 + 6

√
|x |(4− x)+ 24

√
|x | ln

(√
−x+
√

4−x
2

)
(4− x)5/2

.

Since f (−x) generates the alternating series
∑
∞

n=0
(−x)n

Cn
for 0 < x < 4, setting x = 1

we get

∞∑
n=0

(−1)n

Cn
= 1−

53/2
+ 6 · 51/2

+ 24 lnφ

55/2

=
14

25
−

24
√

5

125
lnφ, (5)

where φ is the well-known golden ratio 1+
√

5
2 .
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Formulas (3) and (5) can be employed to compute the sums of the subseries∑
∞

n=0
1

C2n
and

∑
∞

n=0
1

C2n+1
:

∞∑
n=0

1

C2n
=

32

25
+

2
√

3

27
π −

12
√

5

125
lnφ,

∞∑
n=0

1

C2n+1
=

18

25
+

2
√

3

27
π +

12
√

5

125
lnφ.
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Summary. This article studies the convergence of the infinite series of the reciprocals of the
Catalan numbers. We extract the sum of the series as well as some related ones, illustrating the
power of the calculus in the study of the Catalan numbers.
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