Name:

\qquad
Lecture: \qquad Recitation: \qquad

Multivariable Calculus

Math 215.70 Winter 2003
Final Exam
April 21, 2003

Please do all your work in this booklet and show all the steps.
Write your final answer in the corresponding box.
Calculators and note-cards are not allowed.

Problem	Possible points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	15	
7	10	
8	15	
9	10	
Total	100	

${ }^{2}$ Problem 1. (10 pts.)
(a-5 pts.) Find the area of the parallelogram spanned by the vectors $\mathbf{u}=\langle 3,2,-1\rangle$ and $\mathbf{v}=\langle 1,-2,3\rangle$.

(b-5 pts.) Find the rate of change of the function $f(x, y)=x^{2} y+y^{3}$ at the point $(2,1)$ in the direction of the vector $\langle 3,-2\rangle$.

Problem 2. (10 pts.) Three quantities x, y, and z are related by the equation $x^{3} z e^{z^{2}-y^{2}}=2$. First find the equation of the tangent plane to the surface defined by this equation at the point $(1,-2,2)$ and then use it to approximate the value of z corresponding to $x=1.2$ and $y=-2.1$.

Problem 3. (10 pts.) Find the mass of a cylindrical surface of radius $r=3$ centered on the z-axis and bounded by the planes $z=1$ and $z=3$ if the density function is equal to the distance to the xy-plane.

${ }^{4}$ Problem 4. (10 pts.) Using any method you like (for example, the distance formula, Lagrange multipliers, etc.) find the distance from the point $A(17,-4,-3)$ to the point on the plane $6 x-3 y+2 z=10$ closest to A. What is this point?

Problem 5. (10 pts.)
The great Greek mathematician Archimedes in his treatise On Spirals ${ }^{\dagger}$ gave the following definition of a spiral:

If a straight line drawn in a plane revolve at a uniform rate about one extremity which remains fixed and return to the position from which it started, and if, at the same time as the line revolves, a point move at a uniform rate along the straight line, beginning from the extremity which remains fixed, the point will describe a spiral in the plane.
Proposition 24 in this treatise states that
The area bounded by the first turn of the spiral and the initial line is equal to one-third of the 'first cir-

Archimedes proved it using the method of exhaustion.
Use integration in polar coordinates to give a simple proof of this Proposition. Note that in polar coordinates the equation of the Archimedian spiral takes a simple form $r=a \theta$, where a is some constant. In the notations of the picture on the right, you have to show that $\operatorname{Area}\left(D_{1}\right)=\frac{1}{3} \operatorname{Area}\left(D_{2}\right)$ (note that D_{1} is contained in D_{2}).

[^0]
${ }^{6}$ Problem 6. (15 pts.)

In this problem we consider two vector fields,

$$
\mathbf{F}=\langle-y, x\rangle, \quad \text { and } \quad \mathbf{G}=\langle\cos (x)+y, x-1\rangle,
$$

and the curve C from the point $A(-3,0)$ to the point $B(1,0)$ that first goes along the x-axis, and then follows the unit circle (see the picture on the right).

($a-5$ pts.) Carefully explain whether these vector fields are conservative or not.

(b - 5 pts.) Compute the work done by the field \mathbf{F} along the curve C.

(c - 5 pts.) Compute the work done by the field \mathbf{G} along the curve C.

Problem 7. (10 pts.)
Find the circulation of the vector field $\mathbf{F}=(4 x y+x z) \mathbf{i}+(x y-y z) \mathbf{j}+\left(z^{2}-x z\right) \mathbf{k}$ along the curve C which is the boundary of the triangle with vertices $A(2,0,0), B(0,3,0)$, and $C(0,0,6)$ oriented as shown.
(Suggestion: Use Stokes' Theorem).

Answer:

10

Problem 8. (15 pts.)

Use the Divergence Theorem to compare (by evaluating the difference) the flux of the vector field
$\mathbf{F}=\left(-y^{2}+\cos (z)\right) \mathbf{i}+(3 x y+\sin (z)) \mathbf{j}+\left(z+x^{2}\right) \mathbf{k}$ through the surfaces S_{1} and S_{2}, where S_{1} is a lower hemisphere of radius 2 and S_{2} is a part of the paraboloid $z=4-x^{2}-y^{2}$ above the xy-plane and both surfaces are oriented upward (see the picture).

Problem 9. (10 pts.) Below are six pictures of a vector field \mathbf{F}, region D and its oriented boundary C, and a point P inside D.

For each of the properties below, indicate all plots that have that property.
(a) $\operatorname{curl}(\mathbf{F})(P)>0$
(b) Circulation of \mathbf{F} around C is positive
(c) Circulation of \mathbf{F} around C is negative
(d) $\operatorname{div}(\mathbf{F})(P)>0$
(e) Flux of \mathbf{F} across C is negative
(f) \mathbf{F} can be a gradient vector field

[^0]: ${ }^{\dagger}$ The Works of Archimedes, Dover, 1897

