Name: ____

Recitation: ____

Multivariable Calculus Math 215 Fall 2002

Final Exam December 13, 2002

Please do all your work in this booklet and **show all the steps**. Write your final answer in the corresponding box. Calculators are not allowed. One 3x5 note-card (both sides) is allowed.

Droblom	Desgible points	Secre
1 robiem	i ossible politis	Score
1	15	
2	15	
3	10	
4	10	
5	20	
6	10	
7	10	
8	10	
Total	100	

Problem 1. (15 pts.) (a - 5 pts.) Find the rate of change of the function $f(x, y) = 3x^2y + y^3$ at the point (1,2) in the direction of $\mathbf{v} = \langle -3, 4 \rangle$.

	(b)
Answer:	
(c-5 pts.) Find the distance from the point $P(-3,3,4)$ to the plane given by the equation $6x-2$	2y + 3z = 9.

	(c)
Answer:	

(a - 5 pts.) A thin wire is in the shape of the helix parameterized by $\mathbf{r}(t) = \langle 3\cos(t), 3\sin(t), t \rangle$, $0 \le t \le 4\pi$ and has the linear density given by $\delta(x, y, z) = y^2 + 1$. Find the mass of the wire.

	<i>(a)</i>
Answer:	

(b - 5 pts.) Find the mass of the cylindrical surface of radius 5 centered on the x-axis and bounded by the planes x = -3 and x = 3, if the surface density function of the cylinder is $\delta(x, y, z) = |x|$.

	(b)
Answer:	
Entry) Find the mass of the masim below the embana of matice 2 contened at the aniain autoi	do of the culinder of media

(c - 5 pts.) Find the mass of the region below the sphere of radius 3 centered at the origin, outside of the cylinder of radius 2, and above the xy-plane, if the density function is equal to the distance to the xy-plane.

	(c)
er:	

⁴**Problem 3.** (10 pts.) Find the velocity and position vectors of a particle that has the acceleration $\mathbf{a}(t) = 2t\mathbf{i} + 2\mathbf{j}$ (m/sec²) if its initial velocity is $\mathbf{v}(0) = 3\mathbf{i} + 4\mathbf{k}$ (m/sec), and its initial position is $\mathbf{r}(0) = 4\mathbf{i} + 7\mathbf{j} - 2\mathbf{k}$. What is the distance the particle travels in the first 5 seconds?

Answer:

Problem 4. (10 pts.) Find the work done by the "inverse square" vector field $\mathbf{F} = \frac{K\mathbf{r}}{r^3}$ on a particle moving from (1,0,1) to (1,0,0) along the curve parameterized by $x = \cos(2\pi t)$, $y = (t - t^2)$, and z = (1 - t), $0 \le t \le 1$. Here $\mathbf{r} = \langle x, y, z \rangle$, $r = |\mathbf{r}|$, and K is some proportionality constant.

Answer:		
	10	

Problem 5. (20 pts.) Green's Theorem, Stokes' Theorem and the Divergence Theorem.

(a - 6 pts.) Compare circulations of the vector field $\mathbf{F} = \langle \arctan x + y^3, 2x - \sqrt[3]{y} \rangle$ around the circles of radii 1 and 2 centered at the origin and oriented counterclockwise.

		<i>(a)</i>
	Anomoni	
 Y	Answer:	

(a - 7 pts.) Compute the flux of the vector field $\mathbf{F} = x^3 \mathbf{i} + 2xz^2 \mathbf{j} + 3y^2 z \mathbf{k}$ over the surface S, where S is the boundary of the solid bounded by the paraboloid $z = 4 - x^2 - y^2$ and the xy-plane.

	(b)
er:	

⁶ (b - 7 pts.) Compute the integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$, $\mathbf{F} = y\mathbf{i} + x\mathbf{j} + (x^2 + y^2)\mathbf{k}$, where C is the positively oriented boundary curve of the part of the unit sphere $x^2 + y^2 + z^2 = 1$ in the first octant.

	<i>(c)</i>
Answer:	

Problem 6. (10 pts.) Find the maximum and the minimum values of the function $f(x, y) = 4x^2 + xy + 4y^2$ on the unit disk $x^2 + y^2 \le 1$ and the points where these values are attained.

(Maximum)

Answer:

(Minimum)

Answer:

⁸ **Problem 7.** (10 pts.) True or False?

(1)	Any constant vector field \mathbf{F} is a gradient vector field.	Т	F
(2)	If a line integral of a vector field \mathbf{F} along a unit circle $x^2 + y^2 = 1$ is zero, then \mathbf{F} is a gradient vector field.	Т	F
(3)	If C_1 and C_2 are two oriented curves, \mathbf{F} is a vector field, and the length of C_1 is greater than the length of C_2 , then $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} > \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$.	Т	F
(4)	The integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ does not depend on the parameterization of C.	Т	F
(5)	If $\operatorname{div}(\mathbf{F}) = 0$ and $\operatorname{curl}(\mathbf{F}) = 0$, then $\mathbf{F} = 0$.	Т	F
(6)	If $\operatorname{curl}(\mathbf{F}) = 0$, then \mathbf{F} is a conservative vector field.	Т	F
(7)	If F is a gradient vector field, then $\iint_{S} \mathbf{F} \cdot d\mathbf{S} = 0$ for any smooth oriented surface S.	Т	F
(8)	There exists a vector field \mathbf{F} such that $\operatorname{curl}(\mathbf{F}) = x\mathbf{i}$.	Т	F
(9)	If S_1 and S_2 are two oriented surfaces bounded by the same positively oriented curve C and \mathbf{F} is a smooth vector field, then the flux of curl(\mathbf{F}) through S_1 and S_2 is the same.	Т	F

(10) If S is a unit sphere centered at the origin and **F** is a vector field satisfying $\iint_{S} \mathbf{F} \cdot d\mathbf{S} = 0$, $T \cdot F$ then $\operatorname{div}(\mathbf{F}) = 0$ at all points inside S.

Problem 8. (10 pts.) The graph below is a plot of some planar vector field $\mathbf{F} = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$, oriented curves A, B, C, and points R, T, M, N. Use this information to answer the following questions.

(a) Is the circulation of \mathbf{F} around the curve A positive, negative, or zero?

- (b) Is $\oint_B \mathbf{F} \cdot d\mathbf{r}$ positive, negative, or zero?
- (c) Is the work done by \mathbf{F} in moving a particle from M to N along C positive, negative, or zero?
- (d) Is the value of $Q_x P_y$ at R positive, negative, or zero?
- (e) Does the curl of \mathbf{F} at T point in the direction of the positive or negative z-axis or is it zero?
- (f) Is the divergence of \mathbf{F} at M positive, negative, or zero?
- (g) Is the divergence of \mathbf{F} at N positive, negative, or zero?
- (h) What would a small paddle placed at M do?
- (i) What would a small paddle placed at N do?
- (j) Is \mathbf{F} a conservative vector field?