Math 2A – Chapter 9 Test – Fall '07 Name:_

Show your work for credit. No calculators are needed.

- 1. Let $\vec{v} = \langle 2, 3, 6 \rangle$. Find two unit vectors parallel to \vec{v} .
- 2. What work is done by the force vector $\vec{F} = \langle 1, 2, 3 \rangle$ in moving an object from the origin to (2,3,4)? Assume the force is measured in Newtons and the distances are measured in meters.
- 3. Find the angle between the vectors \overrightarrow{OP} and \overrightarrow{OQ} where the coordinates are O 0,0,0 P 2,0,0 , and Q 2,1,1 .
- 4. Find the distance between the plane x-2y+4z=0 and the plane x-2y+4z=7.
- 5. Find an equation for the plane S containing the x-axis and passing through the point P(1, 2, 3).
- 6. Consider the quadric surface described by the equation $2x^2 4x + y^2 + z^2 + 4 = 0$
 - a. Write the equation in standard form
 - b. Identify the surface as one of the following: a hyperbolic paraboloid, an elliptical cone, an elliptical paraboloid, an ellipsoid, a hyperboloid of one sheet or a hyperboloid of two sheets.
 - c. What is the intersection of the surface with the plane x = 2?
- 7. Find the magnitude of the torque vector at *P* if a 20 Newton force is applied to the rigid body shown in the diagram at right. Note that this is a planar diagram. Recall that $|\vec{\tau}| = |\vec{r}| |\vec{F}| \sin \theta$ where \vec{r}

is the lever arm vector \vec{F} is the force vector and θ is the angle between them.

- 8. Describe the cross section that the given plane makes with the surface $z = x^2 4y^2$
 - a. z = 9
 - b. x = 2y
- 9. The spherical coordinates of a point are $\rho, \theta, \phi = \left(2, \frac{7\pi}{6}, -\frac{\pi}{4}\right)$
 - a. What are the rectangular coordinates?
 - b. What are the cylindrical coordinates?
- 10. Write the equation $x^2 + y^2 = 4y$
 - a. Using cylindrical coordinates.
 - b. Using spherical coordinates.

