
Math 2A – Vector Calculus – Final Exam – fall ’11 Name______________________________ 
Show your work for credit.  Do not use a calculator.  Write all responses on separate paper. 

1. Jon’s tether broke while riding the Tilt-a-Whirl at an amusement park and flies off in free fall with an initial 
velocity of 0 〈10,10,9.8〉 from an initial position 0 〈8,0,14.7〉 relative to a coordinate system 
located at the base of the Tilt-a-Whirl.  Jon lands in a vat of cotton candy on the ground.  Where is the vat of 
cotton candy relative to that coordinate system? 
 

2. Consider the curve 〈2 sin , 2 cos , 〉 
a. Find the unit tangent vector as a function of t. 
b. Find a normal vector as a function of t. Note: Doesn’t have to be the unit normal. 
c. Find the curvature.  Hint: The curvature is constant. 
d. Find an equation for the osculating plane where t = 1. 
e. Find the linear component  and normal component  of the acceleration so that 

. 
 

3. Consider the the ellipsoid 3 2 9  
a. Find an equation for the plane tangent to the ellipsoid at the point (1, 1, 2).  
b. Find the center of a sphere of radius 1 that has the same tangent plane at that point.

  
4. Let 3 4 12 16   

a. Find the critical points of w and classify each as either a max, a min, or a saddle point. 
b. Find the point in the first quadrant 0, 0 at which w is largest. 

 
5. Find the flux of  〈 , , 2 〉

  out of the surface S of the cube  , , |0 1,0 1,0 1   
Hint: show that Gauss Theorem (the Divergence Theorem) applies here and use it. 
 

6. Consider the surface described by the paraboloid z = 16 – x2 – y2 for z ≥ 0, as shown below. 

Verify Stokes’ Theorem for this surface and the vector field 3 ,4 , 6F y z x= − .  That is, evaluate both 

sides of the equation ∮ ⋅ ∬ ⋅   and show they are equal. 

 
 

7. Use the Divergence Theorem to compute the flux ∬ ⋅   where the surface S is the unit sphere 

 x2 + y2 + z2 = 1 and the vector field is 〈 , , 〉. 



 

Math 2A – Vector Calculus – Final Exam Solutions – fall ’11  
 

1. Jon’s tether broke while riding the Tilt-a-Whirl at an amusement park and flies off in free fall with an initial 
velocity of 0 〈10,10,9.8〉 from an initial position 0 〈8,0,14.7〉 relative to a coordinate system 
located at the base of the Tilt-a-Whirl.  Jon lands in a vat of cotton candy on the ground.  Where is the vat 
of cotton candy relative to that coordinate system? 
SOLN:  The acceleration near the surface of Earth is   〈0,0, 9.8〉.   
Thus Jon’s velocity is 0 〈0,0, 9.8 〉 〈10,10,9.8〉 〈10,10, 9.8 9.8〉 
Jon’s position at time t is then  
 0 〈10 , 10 , 4.9 9.8 〉 〈8,0,14.7〉 〈10 8,10 , 4.9 9.814.7〉 
So Jon will land in the vat when 4.9 9.8 14.7 4.9 2 3 0, or when 3.  Thus 
the vat is at 3 〈38,30,0〉. 
 

2. Consider the curve 〈2 sin , 2 cos , 〉 
a. Find the unit tangent vector as a function of t. 

SOLN:   | | 〈 	 , , 〉√  

b. Find a normal vector as a function of t. Note: Doesn’t have to be the unit normal. 
SOLN:  The rate of change of the unit vector is in the normal direction: 〈2 cos	 , 2 sin ,1〉4 2 1 2 2〈sin	 ,	cos ,0〉4 2 1 , which is parallel to the unit vector  〈sin	 , 	cos , 0〉, pointing inwards from the position vector, not towards the origin, 
but directly towards the z-axis. 

c. Find the curvature.  Hint: The curvature is constant. 

SOLN:  Using the formula, 
| || | |〈 , , 〉 〈 , , 〉|| | /  2 | cos , sin , 2 ||4 1| / 24 1 

d. Find an equation for the osculating plane where t = 1. 
SOLN:  1 〈2 sin , 2 cos , 1〉 〈0,2,1〉 
The osculating plane contains both the tangent and the normal vectors, so the cross product of those 
vectors is normal to the plane: 〈2 cos	 , 2 sin ,1〉 	 〈 sin	 , cos ,0〉〈cos , sin , 2 〉 .  At 1, a normal to the plane is thus 〈1,0,2 〉  
An equation for the osculating plane is thus  〈1,0,2 〉 ⋅ 〈 0, 2, 1〉 2 1 0 

e. Find the linear component  and normal component  of the acceleration so that 
. 

SOLN:  | ′ | | ′ | | ′ | 0 | ′ |2 2 . 

Since the speed is constant, ′ √4 1, the linear acceleration is zero.  The centripetal 
acceleration is 2  



Here are some Mathematica graphics to illustrate what’s 
going on here: Helix ParametricPlot3D 2 ∗ Sin Pi ∗ , 2∗ Cos Pi ∗ , , , 0,4 	Now, the	radius	of	the	osculating	circle	is		1 1 42 ,	 so	the	center	of	the	osculating	circle	is		1 〈0,1,0〉 〈0, 2,1〉 〈0, 1 42 , 0〉〈0, 12 , 1〉.		 

The osculating circle is contained in the osculating plane , which is parallel to the y-axis, so the 
projection of the osculating circle on the xz-plane is a line segment centered at (0,0,1) of length 2R 
and having slope,  .Thus the amplitude of oscillation for x is  √  and the amplitude of oscillation 

for z is √ .  Thus we can graph the osculating circle together with the helix with  Oscircle ParametricPlot3D Sqrt 4 ∗ Pi 1 ∗ Cos Pi⁄ , 1 4 ∗ Pi⁄ 1 4 ∗ Pi∗ Sin 2 ∗ Pi⁄ , 1 Sqrt 1 4 ∗ Pi ∗ Cos 4 ∗ Pi⁄ , , 0,2 ∗ Pi , PlotStyle→ Thickness 0.01  
and Show Helix, Oscircle : 

 
Now it’s up to you to figure out a formula for the evolute: the locus of centers of all osculating circles for 
this helix. 

3. Consider the ellipsoid 3 2 9 
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a. Find an equation for the plane tangent to the ellipsoid at the point (1, 1, 2).  
SOLN:  We can parameterize the surface as either , 〈 , , 9 3 2 〉 or as , 〈 , , 〉	.  The first of these looks a bit simpler to work with,  

so we compute the normal to the surface as the cross product of tangents: ̂ ̂1 00 1
̂ ̂1 00 1 1 〈 , 1,1〉 and an equation for the tangent plane is obtained 

by using the fact that a vector parallel to the plane is perpendicular to the normal, making the dot 
product of these zero:  〈1.5,1,1〉 ⋅ 〈 1, 1, 2〉 0 or . 
 

b. Find the center of a sphere of radius 1 that has the same tangent plane at that point. 

SOLN:  A unit vector in the direction of the normal is  
√ 〈3,2,2〉	 Just add (or subtract) the vectors: 〈1,1,2〉 √ 〈3,2,2〉 

As an afterthought, In Mathematica, you can render the ellipsoid like so: EllipzoidSphericalPlot3D 3 Sqrt Sin ∗ 1 Cos 1⁄ , , 0,2Pi , , Pi 2⁄ , Pi 2⁄ , PlotStyle →Opacity 0.5  
And the two unit balls with: Balls Graphics3D Sphere 1 3 Sqrt 17⁄ , 1 2 Sqrt 17⁄ , 22 Sqrt 17⁄ , 1 , Sphere 1 3 Sqrt 17⁄ , 1 2 Sqrt 17⁄ , 2 2 Sqrt 17 	⁄ , 1  
and then put these together with Show[Ellipzoid, Balls]: 

 



4. Let 3 4 12 16   
a. Find the critical points of w and classify each as either a max, a min, or a saddle point. 

SOLN:  Critical points are where partial derivatives are both zero: , 6 4 16 0 

and , 4 2 12 0.  Solving the system yields only one critical point ,20,34 .  Inspection of the function suggests this is clearly a maximum, but, to be sure, the second 

derivative test yields the discriminant 6 44 2 4 0, which means that 20,34 44 

is neither a maximum nor a minimum – it’s a saddle. 
The Mathematica command, Plot3D 3 ∗ 4 ∗ 12 ∗ 16 ∗ , , 24, 16 , , 12 , 16  illustrates this: 

 
b. Find the point in the first quadrant 0, 0 at which w is largest. 

SOLN:  There are no critical points in this region, so the maximum will occur at the boundary: either 
along the xw-plane or along the yw-plane.  Plugging in x = 0 we have 36 6 , giving a 

local max at 0, 6,36 .  Plugging in y = 0 we have 3  yielding a local max at , 0, .  Since 36 , the maximum value in the first quadrant is 36. 

5. Find the flux of  〈 , , 2 〉
  out of the surface S of the cube  , , |0 1,0 1,0 1   

Hint: show that Gauss Theorem (the Divergence Theorem) applies here and use it. 
SOLN:  The simplest way to work this is to use the divergence theorem and note that the divergence of  is  ⋅ 1 1 2 0 so the flux must be zero.   
To evaluate the surface integrals directly means evaluating ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

〈0, , 2 〉 ⋅ 〈 1,0,0〉 〈1, , 〉 ⋅ 〈1,0,0〉  

〈 , 0, 2 〉 ⋅ 〈0, 1,0〉 〈 , 1, 〉 ⋅ 〈1,0,0〉  

〈 , , 0〉 ⋅ 〈0,0, 1〉 〈 , , 2〉 ⋅ 〈0,0,1〉 0 1 0 1 0 2 0 

 



6. Consider the surface described by the paraboloid z = 16 – x2 – y2 for z ≥ 0, as shown below. 

Verify Stokes’ Theorem for this surface and the vector field 3 ,4 , 6F y z x= − .  That is, evaluate both 

sides of the equation ∮ ⋅ ∬ ⋅   and show they are equal. 

 
SOLN:  〈4 cos , 4 sin 〉 ⇒ 〈 4 sin , 4 cos 〉 so that ∮ ⋅ 〈12 sin , 0, 24 cos 〉 ⋅ 〈 4 sin , 4 cos 〉 48 sin 48 	
Now the surface is parameterized by , 〈 , , 16 〉  so a measure of the scaled 

infinitesimal surface normal is 
̂ ̂1 0 20 1 2 〈2 , 2 , 1〉   so that  

⋅ 〈 4,6, 3〉 ⋅ 〈 4,6, 3〉 ⋅√
√ 	〈2 , 2 , 1〉  

8 cos 12 sin 3 6 48  

 
 

7. Use the Divergence Theorem to compute the flux ∬ ⋅   where the surface S is the unit sphere 

 x2 + y2 + z2 = 1 and the vector field is 〈 , , 〉. 
SOLN:  ∯ ⋅ ∭ ⋅ ∭ 3 3 3 3 sincos |  


