Math 2A - Vector Calculus - Final Exam - fall '11 Name
Show your work for credit. Do not use a calculator. Write all responses on separate paper.

1. Jon's tether broke while riding the Tilt-a-Whirl at an amusement park and flies off in free fall with an initial velocity of $v(0)=\langle 10,10,9.8\rangle$ from an initial position $p(0)=\langle 8,0,14.7\rangle$ relative to a coordinate system located at the base of the Tilt-a-Whirl. Jon lands in a vat of cotton candy on the ground. Where is the vat of cotton candy relative to that coordinate system?
2. Consider the curve $\vec{r}(t)=\langle 2 \sin \pi t, 2 \cos \pi t, t\rangle$
a. Find the unit tangent vector as a function of t.
b. Find a normal vector as a function of t. Note: Doesn't have to be the unit normal.
c. Find the curvature. Hint: The curvature is constant.
d. Find an equation for the osculating plane where $t=1$.
e. Find the linear component a_{T} and normal component a_{N} of the acceleration so that $\vec{a}(t)=a_{T} \widehat{T}+$ $a_{N} \widehat{N}$.
3. Consider the the ellipsoid $3 x^{2}+2 y^{2}+z^{2}=9$
a. Find an equation for the plane tangent to the ellipsoid at the point $(1,1,2)$.
b. Find the center of a sphere of radius 1 that has the same tangent plane at that point.
4. Let $w=-3 x^{2}-4 x y-y^{2}-12 y+16 x$
a. Find the critical points of w and classify each as either a max, a min, or a saddle point.
b. Find the point in the first quadrant $x \geq 0, y \geq 0$ at which w is largest.
5. Find the flux of $\vec{F}=\langle x, y,-2 z\rangle$ out of the surface S of the cube
$C=\{(x, y, z) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1\}$
Hint: show that Gauss Theorem (the Divergence Theorem) applies here and use it.
6. Consider the surface described by the paraboloid $z=16-x^{2}-y^{2}$ for $z \geq 0$, as shown below.

Verify Stokes' Theorem for this surface and the vector field $\vec{F}=\langle 3 y, 4 z,-6 x\rangle$. That is, evaluate both sides of the equation $\oint_{C} \vec{F} \cdot \overrightarrow{d r}=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \overrightarrow{d S}$ and show they are equal.

7. Use the Divergence Theorem to compute the flux $\iint_{S} \vec{F} \cdot \overrightarrow{d S}$ where the surface S is the unit sphere $x^{2}+y^{2}+z^{2}=1$ and the vector field is $\vec{F}=\left\langle x^{3}, y^{3}, z^{3}\right\rangle$.

Math 2A - Vector Calculus - Final Exam Solutions - fall '11

1. Jon's tether broke while riding the Tilt-a-Whirl at an amusement park and flies off in free fall with an initial velocity of $v(0)=\langle 10,10,9.8\rangle$ from an initial position $p(0)=\langle 8,0,14.7\rangle$ relative to a coordinate system located at the base of the Tilt-a-Whirl. Jon lands in a vat of cotton candy on the ground. Where is the vat of cotton candy relative to that coordinate system?
SOLN: The acceleration near the surface of Earth is $a=\langle 0,0,-9.8\rangle$.
Thus Jon's velocity is $v(t)=\int_{0}^{t} \vec{a}(u) d u+\vec{v}(0)=\langle 0,0,-9.8 t\rangle+\langle 10,10,9.8\rangle=\langle 10,10,-9.8 t+9.8\rangle$ Jon's position at time t is then

$$
p(t)=\int_{0}^{t} \vec{v}(u) d u+\vec{p}(0)=\left\langle 10 t, 10 t,-4.9 t^{2}+9.8 t\right\rangle+\langle 8,0,14.7\rangle=\left\langle 10 t+8,10 t,-4.9 t^{2}+9.8 t+\right.
$$ 14.7)

So Jon will land in the vat when $-4.9 t^{2}+9.8 t+14.7=-4.9\left(t^{2}-2 t-3\right)=0$, or when $t=3$. Thus the vat is at $p(3)=\langle 38,30,0\rangle$.
2. Consider the curve $\vec{r}(t)=\langle 2 \sin \pi t, 2 \cos \pi t, t\rangle$
a. Find the unit tangent vector as a function of t.

SOLN: $\widehat{T}(t)=\frac{\vec{r} \prime(t)}{\left|\overrightarrow{r^{\prime}}(t)\right|}=\frac{\langle 2 \pi \cos \pi t,-2 \pi \sin \pi t, 1\rangle}{\sqrt{4 \pi^{2}+1}}$
b. Find a normal vector as a function of t. Note: Doesn't have to be the unit normal.

SOLN: The rate of change of the unit vector is in the normal direction:
$\frac{d}{d t} \widehat{T}(t)=\frac{d}{d t} \frac{\langle 2 \pi \cos \pi t,-2 \pi \sin \pi t, 1\rangle}{\sqrt{4 \pi^{2}+1}}=\frac{-2 \pi^{2}\langle\sin \pi t, \cos \pi t, 0\rangle}{\sqrt{4 \pi^{2}+1}}$, which is parallel to the unit vector $\widehat{N}=-\langle\sin \pi t, \cos \pi t, 0\rangle$, pointing inwards from the position vector, not towards the origin, but directly towards the z-axis.
c. Find the curvature. Hint: The curvature is constant.

SOLN: Using the formula, $\kappa=\frac{\left|\vec{r} \prime(t) \times \vec{r}^{\prime} \prime(t)\right|}{\left|\vec{r}^{\prime}(t)\right|^{3}}=\frac{2 \pi^{2}|\langle 2 \pi \cos \pi t,-2 \pi \sin \pi t, 1\rangle \times\langle\sin \pi t, \cos \pi t, 0\rangle|}{\left|4 \pi^{2}+1\right|^{3 / 2}}$

$$
=\frac{2 \pi^{2}|-\cos \pi t, \sin \pi t, 2 \pi|}{\left|4 \pi^{2}+1\right|^{3 / 2}}=\frac{2 \pi^{2}}{4 \pi^{2}+1}
$$

d. Find an equation for the osculating plane where $t=1$.

SOLN: $\vec{r}(1)=\langle 2 \sin \pi, 2 \cos \pi, 1\rangle=\langle 0,2,1\rangle$
The osculating plane contains both the tangent and the normal vectors, so the cross product of those vectors is normal to the plane: $\vec{n}=\langle 2 \pi \cos \pi t,-2 \pi \sin \pi t, 1\rangle \times\langle-\sin \pi t,-\cos \pi t, 0\rangle=$ $\langle\cos \pi t,-\sin \pi t,-2 \pi\rangle$. At $t=1$, a normal to the plane is thus $\langle 1,0,2 \pi\rangle$
An equation for the osculating plane is thus

$$
\langle 1,0,2 \pi\rangle \cdot\langle x-0, y-2, z-1\rangle=x+2 \pi(z-1)=0
$$

e. Find the linear component a_{T} and normal component a_{N} of the acceleration so that $\vec{a}(t)=a_{T} \hat{T}+$ $a_{N} \widehat{N}$.
SOLN: $\vec{a}(t)=\frac{d}{d t}\left(\left|\vec{r}^{\prime}(t)\right| \widehat{T}\right)=\widehat{T} \frac{d}{d t}\left(\left|\vec{r}^{\prime}(t)\right|\right)+\left|\vec{r}^{\prime}(t)\right| \frac{d}{d t}(\widehat{T})=0+\left|\vec{r}^{\prime}(t)\right|^{2} \kappa \widehat{N}=2 \pi^{2} \widehat{N}$.
Since the speed is constant, $\vec{r}^{\prime}(t)=\sqrt{4 \pi^{2}+1}$, the linear acceleration is zero. The centripetal acceleration is $a_{N}=\kappa v^{2}=2 \pi^{2}$

Here are some Mathematica graphics to illustrate what's going on here:

Helix $=$ ParametricPlot $3 \mathrm{D}[\{2 * \operatorname{Sin}[\mathrm{Pi} * t], 2$
$* \operatorname{Cos}[\mathrm{Pi} * t], t\},\{t, 0,4\}]$
Now, the radius of the osculating circle is

$$
R=\frac{1}{\kappa}=\frac{1+4 \pi^{2}}{2 \pi^{2}}
$$

so the center of the osculating circle is

$$
\begin{aligned}
\vec{r}(1)+R\langle 0,1,0\rangle & =\langle 0,-2,1\rangle+\left\langle 0, \frac{1+4 \pi^{2}}{2 \pi^{2}}, 0\right\rangle \\
& =\left\langle 0, \frac{1}{2 \pi^{2}}, 1\right\rangle .
\end{aligned}
$$

The osculating circle is contained in the osculating plane, which is parallel to the y-axis, so the projection of the osculating circle on the xz-plane is a line segment centered at $(0,0,1)$ of length $2 R$ and having slope, $-\frac{1}{2 \pi}$.Thus the amplitude of oscillation for x is $\frac{2 \pi}{\sqrt{4 \pi^{2}+1}}$ and the amplitude of oscillation for z is $\frac{\sqrt{4 \pi^{2}+1}}{4 \pi^{2}}$. Thus we can graph the osculating circle together with the helix with

$$
\begin{aligned}
& \text { Oscircle }=\text { ParametricPlot } 3 \mathrm{D}\left[\left\{-\operatorname{Sqrt}\left[4 * \mathrm{Pi}^{2}+1\right] * \operatorname{Cos}[t] / \mathrm{Pi}, 1 /\left(4 * \mathrm{Pi}^{2}\right)+\left(1+4 * \mathrm{Pi}^{2}\right)\right.\right. \\
&\left.* \operatorname{Sin}[t] /\left(2 * \mathrm{Pi}^{2}\right), 1+\operatorname{Sqrt}\left[1+4 * \mathrm{Pi}^{2}\right] * \operatorname{Cos}[t] /\left(4 * \mathrm{Pi}^{2}\right)\right\},\left\{t, 0,2 * \mathrm{Pi}^{2},\right. \text { PlotStyle } \\
&\rightarrow \text { Thickness }[0.01]]
\end{aligned}
$$

and Show[Helix, Oscircle]:

Now it's up to you to figure out a formula for the evolute: the locus of centers of all osculating circles for this helix.
3. Consider the ellipsoid $3 x^{2}+2 y^{2}+z^{2}=9$
a. Find an equation for the plane tangent to the ellipsoid at the point $(1,1,2)$.

SOLN: We can parameterize the surface as either $\vec{r}(x, y)=\left\langle x, y, \sqrt{9-3 x^{2}-2 y^{2}}\right\rangle$ or as $\vec{r}(\theta, \phi)=\left\langle\theta, \phi, \frac{3}{\sqrt{\sin ^{2} \phi\left(1+\cos ^{2} \theta\right)+1}}\right\rangle$. The first of these looks a bit simpler to work with, so we compute the normal to the surface as the cross product of tangents:
$\vec{n}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 0 & -\frac{3}{\sqrt{9-3 x^{2}-2 y^{2}}} \\ 0 & 1 & -\frac{2}{\sqrt{9-3 x^{2}-2 y^{2}}}\end{array}\right|=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 0 & -\frac{3}{2} \\ 0 & 1 & -1\end{array}\right|=\left\langle\frac{3}{2}, 1,1\right\rangle$ and an equation for the tangent plane is obtained
by using the fact that a vector parallel to the plane is perpendicular to the normal, making the dot product of these zero:
$\langle 1.5,1,1\rangle \cdot\langle x-1, y-1, z-2\rangle=0$ or $z=\frac{9}{2}-\frac{3}{2} x-y$.
b. Find the center of a sphere of radius 1 that has the same tangent plane at that point.

SOLN: A unit vector in the direction of the normal is $\frac{\sqrt{17}}{17}\langle 3,2,2\rangle$ Just add (or subtract) the vectors: $\langle 1,1,2\rangle \pm \frac{\sqrt{17}}{17}\langle 3,2,2\rangle$
As an afterthought, In Mathematica, you can render the ellipsoid like so:
Ellipzoid =
SphericalPlot3D[3/Sqrt[(Sin $\left.[\phi])^{2} *\left(1+(\operatorname{Cos}[\theta])^{2}\right)+1\right],\{\phi, 0,2 \operatorname{Pi}\},\{\theta,-\mathrm{Pi} / 2, \mathrm{Pi} / 2\}$, PlotStyle \rightarrow Opacity[0.5]]
And the two unit balls with: Balls $=$ Graphics3D[\{Sphere[\{1 $+3 /$ Sqrt[17], $1+2 /$ Sqrt[17] , $2+$ 2/Sqrt[17]\}, 1], Sphere[\{1 - 3/Sqrt[17], 1-2/Sqrt[17], $2-2 / \operatorname{Sqrt}[17]\}, 1]\}]$ and then put these together with Show[Ellipzoid, Balls]:

4. Let $w=-3 x^{2}-4 x y-y^{2}-12 y+16 x$
a. Find the critical points of w and classify each as either a max, a min, or a saddle point.

SOLN: Critical points are where partial derivatives are both zero: $\frac{\partial}{\partial x} f(x, y)=-6 x-4 y+16=0$ and $\frac{\partial}{\partial y} f(x, y)=-4 x-2 y-12=0$. Solving the system yields only one critical point $(x, y)=$ $(-20,34)$. Inspection of the function suggests this is clearly a maximum, but, to be sure, the second derivative test yields the discriminant $D=\left|\begin{array}{ll}-6 & -4 \\ -4 & -2\end{array}\right|=-4<0$, which means that $w(-20,34)=44$ is neither a maximum nor a minimum - it's a saddle.
The Mathematica command,
Plot3D $\left[-3 * x^{2}-4 x * y-y^{2}-12 * y+16 * x,\{x,-24,-16\},\{y, 12-x, 16-x\}\right]$ illustrates this:

b. Find the point in the first quadrant $x \geq 0, y \geq 0$ at which w is largest.

SOLN: There are no critical points in this region, so the maximum will occur at the boundary: either along the $x w$-plane or along the $y w$-plane. Plugging in $x=0$ we have $w=36-(y+6)^{2}$, giving a local max at $(0,-6,36)$. Plugging in $y=0$ we have $w=\frac{64}{3}-3\left(x-\frac{8}{3}\right)^{2}$ yielding a local max at $\left(\frac{8}{3}, 0, \frac{64}{3}\right)$. Since $36>\frac{64}{3}$, the maximum value in the first quadrant is 36 .
5. Find the flux of $\vec{F}=\langle x, y,-2 z\rangle$ out of the surface S of the cube
$C=\{(x, y, z) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1\}$
Hint: show that Gauss Theorem (the Divergence Theorem) applies here and use it.
SOLN: The simplest way to work this is to use the divergence theorem and note that the divergence of \vec{F} is $\vec{\nabla} \cdot \vec{F}=1+1-2=0$ so the flux must be zero.
To evaluate the surface integrals directly means evaluating

$$
\begin{aligned}
& \oiint_{S} \vec{F} \cdot \overrightarrow{d S}=\iint_{x=0} \vec{F} \cdot \overrightarrow{d S}+\iint_{x=1} \vec{F} \cdot \overrightarrow{d S}+\iint_{y=0} \vec{F} \cdot \overrightarrow{d S}+\iint_{y=1} \vec{F} \cdot \overrightarrow{d S}+\iint_{z=0} \vec{F} \cdot \overrightarrow{d S}+\iint_{z=1} \vec{F} \cdot \overrightarrow{d S} \\
& =\iint_{x=0}\langle 0, y,-2 z\rangle \cdot\langle-1,0,0\rangle d A+\int_{0}^{1} \int_{0}^{1}\langle 1, y, z\rangle \cdot\langle 1,0,0\rangle d y d z \\
& +\iint_{y=0}\langle x, 0,-2 z\rangle \cdot\langle 0,-1,0\rangle d A+\int_{0}^{1} \int_{0}^{1}\langle x, 1, z\rangle \cdot\langle 1,0,0\rangle d x d z \\
& +\iint_{y=0}\langle x, y, 0\rangle \cdot\langle 0,0,-1\rangle d A+\int_{0}^{1} \int_{0}^{1}\langle x, y,-2\rangle \cdot\langle 0,0,1\rangle d x d y=0+1+0+1+0-2=0
\end{aligned}
$$

6. Consider the surface described by the paraboloid $z=16-x^{2}-y^{2}$ for $z \geq 0$, as shown below.

Verify Stokes' Theorem for this surface and the vector field $\vec{F}=\langle 3 y, 4 z,-6 x\rangle$. That is, evaluate both sides of the equation $\oint_{C} \vec{F} \cdot \overrightarrow{d r}=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \overrightarrow{d S}$ and show they are equal.

SOLN: $\vec{r}(t)=\langle 4 \cos t, 4 \sin t\rangle \Rightarrow \vec{r}^{\prime}(t)=\langle-4 \sin t, 4 \cos t\rangle$ so that
$\oint_{C} \vec{F} \cdot \overrightarrow{d r}=\int_{0}^{2 \pi}\langle 12 \sin t, 0,-24 \cos t\rangle \cdot\langle-4 \sin t, 4 \cos t\rangle d t=-48 \int_{0}^{2 \pi} \sin ^{2} t d t=-48 \pi$
Now the surface is parameterized by $\vec{r}(x, y)=\left\langle x, y, 16-x^{2}-y^{2}\right\rangle$ so a measure of the scaled
infinitesimal surface normal is $\overrightarrow{d S}=\left(\vec{r}_{x} \times \vec{r}_{y}\right) d x d y=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 0 & -2 x \\ 0 & 1 & -2 y\end{array}\right| d x d y=\langle 2 x, 2 y, 1\rangle d x d y$ so that

$$
\begin{aligned}
& \iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \overrightarrow{d S}=\iint_{S}\langle-4,6,-3\rangle \cdot \overrightarrow{d S}=\int_{-4}^{4} \int_{-\sqrt{16-x}}^{\sqrt{16-x}}\langle-4,6,-3\rangle \cdot\langle 2 x, 2 y, 1\rangle d x d y \\
& =\int_{0}^{4} \int_{0}^{2 \pi}-8 r^{2} \cos \theta+12 r^{2} \sin \theta-3 r d \theta d r=-6 \pi \int_{0}^{4} r d r=-48 \pi
\end{aligned}
$$

7. Use the Divergence Theorem to compute the flux $\iint_{S} \vec{F} \cdot \overrightarrow{d S}$ where the surface S is the unit sphere $x^{2}+y^{2}+z^{2}=1$ and the vector field is $\vec{F}=\left\langle x^{3}, y^{3}, z^{3}\right\rangle$.
SOLN: $\oiint_{S} \vec{F} \cdot \overrightarrow{d S}=\iiint_{E} \vec{\nabla} \cdot \vec{F} d V=\iiint_{E} 3 x^{2}+3 y^{2}+3 z^{2} d V=3 \int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{\pi} \rho^{4} \sin \phi d \phi d \theta d \rho=$ $-\left.\frac{6 \pi}{5} \cos \phi\right|_{0} ^{\pi}=\frac{12 \pi}{5}$
