## Some Math 2A Problems for Chapter 12 Test Study - Spring '11

1. True or False or Conditional. Explain your answer.
a. Any two vectors determine a plane.
b. Any two lines determine a plane.
c. For a given point and a given plane there is a unique line through that point and perpendicular to the plane.
d. The intersection of any two planes is a line.
e. Any line in the $x y$ plane will intersect a line in the $x z$ plane.
2. Find two vectors parallel to the plane $z=3-2 x+y$ but not parallel to each other and compute the cross product of these vectors.
3. Consider the point $(1,1,3)$ and the plane $3 x+2 y+6 z=6$
a. Find the point where the plane intersects the $z$-axis and
4. Show that the length of a vector is zero if and only if all its components are zero.
5. Identify the surface whose equation is given as one of the following: a hyperbolic paraboloid, an elliptical cone, an elliptical paraboloid, an ellipsoid, a hyperboloid of one sheet or a hyperboloid of two sheets.
a. $x^{2}-2 y^{2}+3 z^{2}=6$
b. $x^{2}-2 y^{2}-3 z^{2}=6$
c. $x^{2}+2 y^{2}+3 z^{2}=6$
d. $x^{2}-2 y^{2}+3 z^{2}=0$
e. $x^{2}+2 y^{2}+z=4$
6. The plane $S$ passes through the point $P(1,2,3)$ and contains the line $x=3 t, y=1+t$, and $z=2-t$. Find a vector normal to $S$.
7. Which of the following statements is true for all three-dimensional vectors $\vec{a}, \vec{b}$, and $\vec{c}$, if $\theta$ is the angle between $\vec{a}$ and $\vec{b}$ ? Note that none or all could be true.
a. $\vec{a} \times \vec{b}=\vec{b} \times \vec{a}$
b. $\vec{a} \cdot(\vec{b} \times \vec{c})=(\vec{b} \times \vec{c}) \cdot \vec{a}$
c. $|\vec{a} \times \vec{b}|=|\vec{b}| \cdot|\vec{a}| \cdot|\cos \theta|$
d. $|\vec{a} \times \vec{b}| \cdot \vec{a}=0$
8. Find the torque at P if a 32 pound force is applied to the rigid body shown in the diagram at right. Note that this is a planar diagram.

9. The Parallelogram Law states that $|\vec{a}+\vec{b}|^{2}+|\vec{a}-\vec{b}|^{2}=2|\vec{a}|^{2}+2|\vec{b}|^{2}$
a. Give a geometric interpretation of this law.
b. Prove the law. The triangle inequality and/or Cauchy Schwarz inequality may be useful.
10. Find the equation of the plane that contains the points $(1,2,1),(2,-1,0)$ and $(3,3,1)$.
11. Find the distance between the planes $z=1-x-3 y$ and $x+3 y+z=5$
12. Find an equation for the line where the plane $x-2 y+z=0$ intersects the plane $2 x-y+2 z=3$.
13. Parameterize the line segment from $(6,4,1)$ to $(3,2,5)$ as $0 \leq t \leq 1$.
14. Use vectors to prove that diagonals of a rhombus are perpendicular.
15. Find the area of a parallelogram formed by vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ if $P(1,2,3), Q(5,4,2)$ and $R(7,2,5)$.
16. Show that for all $a, b \in \mathbb{R}$, if $x>0$ and $y>0, \frac{(a+b)^{2}}{x+y} \leq \frac{a^{2}}{x}+\frac{b^{2}}{y}$.
17. Write the equation in standard form: $x-y^{2}+8 y+4 z^{2}+4 z=115$ and describe the surface.
18. Suppose that Jack and Jill pull on a ropes attached to an object. Jack pulls with a force of 450 N and Jill pulls with a force of 300 N . The angle between the ropes is $30^{\circ}$. With what direction and force should a third person pull so as to keep the object from moving? Draw a diagram.
19. What force (in Newtons) must be applied to the end of a lever of length 20 cm in the direction $\langle 0,3,4\rangle$ to produce a torque of magnitude 10 Nm ?
20. How can the triple product be used to determine whether or not three different vectors are coplanar? Give and example.
21. Find the cross product of $\left\langle 1, \cos \frac{\pi}{3}, \sin \frac{\pi}{6}\right\rangle \times\left\langle 1, \cos \frac{\pi}{6}, \sin \frac{\pi}{2}\right\rangle$ and simplify.
22. Find the cross product of $\langle 1, \cos \theta, \sin \theta\rangle \times\langle 1, \sin \theta, \cos \theta\rangle$ and simplify.
23. Find the length of the projection of a vector from any point $P$ on the plane $x+2 y-3 z=6$ to $Q(1,3,2)$ onto a vector normal to the plane.
24. Think of two quadric surfaces whose intersection is the ellipse $x^{2}+3 y^{2}=1$ in the plane $z=1$.
