
Math 2A – Vector Calculus – Chapter 14 Test – Fall ’11   Name__________________________ 
Show your work.  Don’t use a calculator.  Write responses on separate paper. 
 
 
1. Consider the nice, smooth function 

( ),z f x y=  whose contour map is 
shown at right. 
 
a. Estimate function values to the 

nearest tenth to fill in the blank cells 
in the table below: 

\ 0.4 1.0 1.5
0.2 0.05 0.14
0.4
0.6 0.14 0.42

x y

 

 
b. Use the value in your table above to 

estimate fx(0.4,1.0) and fy(0.4,1.0) to 
the nearest tenth. 
 

c. Let v  be the vector from P(0.6,0.4) 
to Q(0.2,1.5)  
Compute ( )0.4,1.0vD f  in two ways: 

as z
h
Δ  and as vz

v
∇ i  

 
d. Let v  be the vector from P(0.2,0.4) to Q(0.6,1.5)  

Compute ( )0.4,1.0vD f  in two ways: as z
h
Δ  and as vz

v
∇ i . 

 

2. Show that 
( ) ( ) 2 2, 0,0

lim
x y

x
x y→ +

 does not exist. 

 
 

3. Sketch level curves f(x,y) = 0,  f(x,y) = ½ and f(x,y) = 1/5 for the function                      

                             ( ) ( ) ( )

( ) ( )

2

2 2 if , 0,0
,

0 if , 0,0

x x y
x yf x y

x y

⎧
≠⎪ += ⎨

⎪ =⎩

. 

 
 

 
 



4. Find points on the surface xy + yz + zx – x – z2 = 0 where the tangent plane is parallel to the xy-plane.  
 
 
 

5. Show that ( ) ( ), arctan /f x y y x=  satisfies the two dimensional Laplace equation, 
2 2

2 2 0f f
x y

∂ ∂
+ =

∂ ∂
. 

 
 
 

6. Find the direction in which f (x,y) = x2 + cos(xy)  increases most rapidly at the point P0(1,0). 
 
 
 

7. Consider ( ) 3 3, 3f x y x xy y= + +  
a. Find the critical points. 

 
b. Find all maxima, minima and saddle points and evaluate the function at those points. 

 
 
 
 

8. Find the absolute max. and min. values of f(x, y) = xy  on the ellipse x2 + 4y2 = 8 in two ways: 
a. By using the parameterization , 2 2 cos , 2 sinx y t t=  

 
b. By using Lagrange multipliers. 

 
 
 

9. Find a level surface for the density function ( ) 2 2 2, ,f x y z x y z= + −  that has  
the tangent plane 2x + 3y – z = 3. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



Math 2A – Vector Calculus – Chapter 11 Test Solutions – Fall ’09    
 
1. Consider the nice, smooth function ( ),z f x y=  

whose contour map is shown at right. 
 
a) Estimate function values to the nearest tenth 

to fill in the blank cells in the table below: 
\ 0.4 1.0 1.5

0.2 0.05 0.1 0.14
0.4 0.1 0.2 0.3
0.6 0.14 0.3 0.42

x y

 

 
b) Use the value in your table above to 

estimate fx(0.4,1.0) and fy(0.4,1.0) to the 
nearest tenth. 

( ) 0.3 0.1 10.4,1.0
0.6 0.2 2x

zf
x

Δ −
≈ = =
Δ −

 

( ) 0.3 0.1 20.4,1.0
1.5 0.4 11y

zf
y

Δ −
≈ = =
Δ −

 

c) Let v  be the vector from P(0.6,0.4) to Q(0.2,1.5)  

Compute ( )0.4,1.0vD f  in two ways: as z
h
Δ  and as vz

v
∇ i  

SOLN:  0.2 0.6,1.5 0.4 0.16 1.21 1.37 1.17v PQ= = − − = + = ≈  or  1.2 will do. 

( ) 00.4,1.0 0v
zD f

h h
Δ

≈ = =  or  

0.4,1.1 0.4,1.1 0.20 0.20, 0.5,0.18 0
1.2 1.2 1.2x y

vz f f
v

− − − +
∇ = = ≈ =i i i  

d) Let v  be the vector from P(0.2,0.4) to Q(0.6,1.5)  

Compute ( )0.4,1.0vD f  in two ways: as z
h
Δ  and as vz

v
∇ i . 

SOLN: 0.6 0.2,1.5 0.4 0.16 1.21 1.37 1.2v PQ= = − − = + = ≈  

So, ( ) 0.370.4,1.0 0.31
1.2v

zD f
h
Δ

≈ = ≈  or  

0.4,1.1 0.4,1.1 0.40, 0.5,0.18 0.33
1.2 1.2 1.2x y

vz f f
v

∇ = = ≈ ≈i i i  

2. Show that 
( ) ( ) 2 2, 0,0

lim
x y

x
x y→ +

 does not exist. 
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8. Find the absolute max. and min. values of f(x, y) = xy  on the ellipse x2 + 4y2 = 8 in two ways 
a) By using the parameterization , 2 2 cos , 2 sinx y t t=  

SOLN:  Along the path , 2 2 cos , 2 sinx y t t= , z = 4cos t sin t  = 2sin2t so z’ = 

4cos2t = 0  
if  t = an odd multiple of π/4.  At π/4 and 5π/4 z” = –4 so (2, 1, 2) and (–2,–1,2) are global 
maxima and at 3π/4 and 7π/4 z” = 4 so (–2, 1, –2) and (2,–1, –2) are global minima. 
 
b) By using Lagrange multipliers. 

 
SOLN:  , 2 ,8f g y x x yλ λ∇ = ∇ ⇔ =  leads to the system 
 

2 2

2
8

4 8

y x
x y

x y

λ
λ

=
=

+ =

 
Substituting from the second to the first, 216y yλ= , we know that either 
y = 0 or λ = ±¼.  If y = 0 then x = 0 and then constraint 2 24 8x y+ =  can’t 
be met so λ = ±¼ which means y = ±x/2 and substituting into the the 
ellipse equation, 2 2 8 2x x x+ = ⇔ = ±  meaning that  1y = ∓  

After investigating we determine that the global max is 2 occurring at (2,1) and (–2,–1) and the 
global min is –2 occurring at (–2,1) and (2,–1).   
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9. Find a level surface for the density function ( ) 2 2 2, ,f x y z x y z= + −  that has  

the tangent  plane 2x + 3y – z = 3. 
SOLN: The normal to the level surface will be parallel to the normal to the plane if  

2 , 2 , 2 2,3, 1f x y z λ∇ = − = − so that λ = x = 2y/3 = 2z and substituting into the equation of 
the plane,  2λ + 9λ/2 – λ/2  = 6λ = 3 or λ = 1/2 and thus 
( ) ( ) ( ) ( )2 2 21/ 2,3 / 4,1/ 4 1/ 2 3 / 4 1/ 4 3 / 4f = + − = .  So the level surface is 2 2 2 3 / 4x y z+ − =  
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