Math 2A – Vector Calculus – Chapter 14 Test – Fall '11 Name_____ Show your work. Don't use a calculator. Write responses on separate paper.

- 1. Consider the nice, smooth function z = f(x, y) whose contour map is shown at right.
 - a. Estimate function values to the nearest tenth to fill in the blank cells in the table below:

$x \setminus y$	0.4	1.0	1.5
0.2	0.05		0.14
0.4			
0.6	0.14		0.42

- b. Use the value in your table above to estimate $f_x(0.4,1.0)$ and $f_y(0.4,1.0)$ to the nearest tenth.
- c. Let \vec{v} be the vector from P(0.6, 0.4)to Q(0.2, 1.5)Compute $D_{\vec{v}} f(0.4, 1.0)$ in two ways: Δz \vec{v}

as
$$\frac{\Delta z}{h}$$
 and as $\overline{\nabla z} \cdot \frac{v}{|\vec{v}|}$
Let \vec{v} be the vector from $P(0.2, 0.4)$ to $Q(0.4)$

2. Show that $\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2 + y^2}}$ does not exist.

3. Sketch level curves
$$f(x,y) = 0$$
, $f(x,y) = \frac{1}{2}$ and $f(x,y) = \frac{1}{5}$ for the function

$$f(x,y) = \begin{cases} \frac{x^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

- 4. Find points on the surface $xy + yz + zx x z^2 = 0$ where the tangent plane is parallel to the *xy*-plane.
- 5. Show that $f(x, y) = \arctan(y/x)$ satisfies the two dimensional Laplace equation, $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$.
- 6. Find the direction in which $f(x,y) = x^2 + \cos(xy)$ increases most rapidly at the point $P_0(1,0)$.
- 7. Consider $f(x, y) = x^3 + 3xy + y^3$
 - a. Find the critical points.
 - b. Find all maxima, minima and saddle points and evaluate the function at those points.
- 8. Find the absolute max. and min. values of f(x, y) = xy on the ellipse $x^2 + 4y^2 = 8$ in two ways: a. By using the parameterization $\langle x, y \rangle = \langle 2\sqrt{2} \cos t, \sqrt{2} \sin t \rangle$
 - b. By using Lagrange multipliers.
- 9. Find a level surface for the density function $f(x, y, z) = x^2 + y^2 z^2$ that has the tangent plane 2x + 3y z = 3.

Math 2A – Vector Calculus – Chapter 11 Test Solutions – Fall '09

- 1. Consider the nice, smooth function z = f(x, y) whose contour map is shown at right.
 - a) Estimate function values to the nearest tenth to fill in the blank cells in the table below:

$x \setminus y$	0.4	1.0	1.5
0.2	0.05	0.1	0.14
0.4	0.1	0.2	0.3
0.6	0.14	0.3	0.42

b) Use the value in your table above to estimate $f_x(0.4,1.0)$ and $f_y(0.4,1.0)$ to the nearest tenth.

$$f_x (0.4, 1.0) \approx \frac{\Delta z}{\Delta x} = \frac{0.3 - 0.1}{0.6 - 0.2} = \frac{1}{2}$$
$$f_y (0.4, 1.0) \approx \frac{\Delta z}{\Delta y} = \frac{0.3 - 0.1}{1.5 - 0.4} = \frac{2}{11}$$

- c) Let \vec{v} be the vector from P(0.6, 0.4) to Q(0.2, 1.5)Compute $D_{\vec{v}} f(0.4, 1.0)$ in two ways: as $\frac{\Delta z}{h}$ and as $\nabla \vec{z} \cdot \frac{\vec{v}}{|\vec{v}|}$ SOLN: $|\vec{v}| = |\vec{PQ}| = |\langle 0.2 - 0.6, 1.5 - 0.4 \rangle| = \sqrt{0.16 + 1.21} = \sqrt{1.37} \approx 1.17$ or 1.2 will do. $D_{\vec{v}} f(0.4, 1.0) \approx \frac{\Delta z}{h} = \frac{0}{h} = 0$ or $\nabla \vec{z} \cdot \frac{\vec{v}}{|\vec{v}|} = \langle f_x, f_y \rangle \cdot \frac{\langle -0.4, 1.1 \rangle}{1.2} = \langle 0.5, 0.18 \rangle \cdot \frac{\langle -0.4, 1.1 \rangle}{1.2} \approx \frac{-0.20 + 0.20}{1.2} = 0$ d) Let \vec{v} be the vector from P(0.2, 0.4) to Q(0.6, 1.5)
- Compute $D_{\vec{v}}f(0.4,1.0)$ in two ways: as $\frac{\Delta z}{h}$ and as $\overline{\nabla z} \cdot \frac{\vec{v}}{|\vec{v}|}$. SOLN: $|\vec{v}| = |\overrightarrow{PQ}| = |\langle 0.6 - 0.2, 1.5 - 0.4 \rangle| = \sqrt{0.16 + 1.21} = \sqrt{1.37} \approx 1.2$ So, $D_{\vec{v}}f(0.4,1.0) \approx \frac{\Delta z}{h} = \frac{0.37}{1.2} \approx 0.31$ or $\overline{\nabla z} \cdot \frac{\vec{v}}{|\vec{v}|} = \langle f_x, f_y \rangle \cdot \frac{\langle 0.4, 1.1 \rangle}{1.2} = \langle 0.5, 0.18 \rangle \cdot \frac{\langle 0.4, 1.1 \rangle}{1.2} \approx \frac{0.40}{1.2} \approx 0.33$
- 2. Show that $\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2 + y^2}}$ does not exist.

SOLN: $\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}} = \lim_{r\to 0} \frac{r\cos\theta}{r} = \cos\theta$ is path dependent.

Also, along the line y = x, $\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2 + y^2}} = \lim_{x\to 0} \frac{x}{\sqrt{x^2 + x^2}} = \lim_{x\to 0} \frac{x}{\sqrt{2}|x|}$ does not exist because $\lim_{x\to 0^+} \frac{x}{\sqrt{2}|x|} = \lim_{x\to 0^+} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \neq \lim_{x\to 0^-} \frac{x}{\sqrt{2}|x|} = \lim_{x\to 0^+} \frac{-1}{\sqrt{2}} = \frac{-1}{\sqrt{2}}$

3. Sketch level curves f(x,y) = 0, $f(x,y) = \frac{1}{2}$ and $f(x,y) = \frac{1}{5}$ for the function

$$f(x,y) = \begin{cases} \frac{x^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

SOLN:
$$\frac{x^2}{x^2 + y^2} = \frac{1}{2} \Leftrightarrow x^2 = y^2 \Leftrightarrow y = \pm x \quad \frac{x^2}{x^2 + y^2} = \frac{1}{5} \Leftrightarrow 4x^2 = y^2 \Leftrightarrow y = \pm 2x$$

The graphic below is constructed in Mathematica with ParametricPlot3D[{{ , , ^2(^2+ ^2)},{ , , 1/2},{ , - , 1/2},{ - 2, , 1/5},{ 2, , 1/5}},{ , -2,2},{ , -2,2},PlotStyle \rightarrow Directive[Opacity[0.5],Thick]].

You see the two lines which form the intersection of the plane $z = \frac{1}{2}$ and the lines where the plane $z = \frac{1}{5}$ intersects the surface.

This shows, by the way, that there is no limiting value of z as (x,y) approaches (0,0).

4. Find points on the surface $xy + yz + zx - x - z^2 = 0$ where the tangent plane is parallel to the *xy*-plane.

SOLN: This is a level surface for the function $f(x,y,z) = xy + yz + zx - x - z^2$, so the gradient vector $\nabla f = \langle f_x, f_y, f_z \rangle = \langle y + z - 1, x + z, y + x - 2z \rangle$ is normal to the tangent plane. This means the tangent plane is horizontal only if $f_x = y + z - 1 = 0$ and

 $f_y = x + z = 0$. Each of these equations describes a plane, and the intersection of these planes is the line $\vec{r}(t) = \langle -t, 1-t, t \rangle = \langle 0, 1, 0 \rangle - t \langle 1, 1, -1 \rangle$. Plug $\vec{r}(t) = \langle -t, 1-t, t \rangle$ into $f(x, y, z) = f(-t, 1-t, t) = -t(1-t) + (1-t)t - t^2 + t - t^2 = -t(2t - t)t - t^2 + t - t^2 + t - t^2 = -t(2t - t)t - t^2 + t - t^2 + t - t^2 = -t(2t - t)t - t^2 + t - t^2 = -t(2t - t)t - t^2 + t - t^2 + t - t^2 = -t(2t - t)t - t^2 + t - t^2 + t - t^2 = -t(2t - t)t - t^2 + t -$

$$1) = 0$$

so either t = 0 or $t = \frac{1}{2}$ whence the points where tangent plane is horizontal are (0,1,0) and $(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. To help visualize what's going on here, you might solve the equation for the surface for *z*:

$$z^{2} - (x + y)z + x(1 - y) = 0 \Leftrightarrow z = \frac{x + y \pm \sqrt{(x + y)^{2} - 4x(1 - y)}}{2}.$$

We can then visualize this in Mathematica with the following command: Plot3D[{{($x + y + Sqrt[(x + y)^2 - 4x(1 - y)])/2$ },

The graph shows a tilted hyperboloid of one sheet with the two tangent planes almost dead edge-on.

5. Show that $f(x, y) = \arctan(y/x)$ satisfies the two dimensional Laplace equation,

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$

$$\nabla f(x, y) = \left\langle \frac{d}{dx} \arctan(y/x), \frac{d}{dy} \arctan(y/x) \right\rangle$$

$$= \left\langle \frac{-y}{x^2 \left(1 + \left(y/x\right)^2\right)}, \frac{1}{x \left(1 + \left(y/x\right)^2\right)} \right\rangle = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$$

$$\nabla^2 f(x, y) = f_{xx} + f_{yy} = \frac{-2xy}{\left(x^2 + y^2\right)^2} + \frac{2yx}{\left(x^2 + y^2\right)^2} = 0$$

This is kind of interesting in polar form: $f(r\cos\theta, r\sin\theta) = \arctan(\tan\theta) = \begin{cases} \theta\\ \theta+\pi \end{cases}$

and
$$\nabla f(r,\theta) = \left\langle \frac{d}{dr} \arctan(\theta), \frac{d}{d\theta} \theta \right\rangle = \langle 0, 1 \rangle$$

6. Find the direction in which $f(x,y) = x^2 + \cos(xy)$ increases most rapidly at the point $P_0(1,0)$. SOLN: $\nabla f(1,0) = \langle 2x - y \sin xy, -x \sin xy \rangle \Big|_{(1,0)} = \langle 2,0 \rangle$ so f grows at a rate of 2/1 in that

direction.

- 7. Consider $f(x, y) = x^3 + 3xy + y^3$
 - a) Find the critical points. SOLN: $f_x = 3x^2 + 3y = 0 \Leftrightarrow y = -x^2$ and $f_y = 3x + 3y^2 = 0 \Leftrightarrow x = -y^2$, substituting, we get $y = -(-y^2)^2 = -y^4 \Leftrightarrow y = 0$ or y = -1, leading to critical points (0,0) and (-1, -1).
 - b) Find all maxima, minima and saddle points and evaluate the function at those points. SOLN: $D = f_{xx}f_{yy} - (f_{xy})^2 = (6x)(6y) - 3^2 = 36xy - 9$ is positive at (-1, -1) where $f_{xx} = -6 < 0$, so this is a local maximum. The point (0,0) has D < 0 so the point is a saddle. In the diagram below, the local max at (-1, -1, 1) seems evident. The saddle is a little more subtle. Look at the curves $\vec{r_1} = \langle t, t, 2t^3 + 3t^2 \rangle$ and $\vec{r_2} = \langle t, -t, -3t^2 \rangle$ are shown on the plot and you can see the first is curving up at (0,0,0) and the other is curving down.

- 8. Find the absolute max. and min. values of f(x, y) = xy on the ellipse $x^2 + 4y^2 = 8$ in two ways a) By using the parameterization $\langle x, y \rangle = \langle 2\sqrt{2} \cos t, \sqrt{2} \sin t \rangle$
 - SOLN: Along the path $\langle x, y \rangle = \langle 2\sqrt{2} \cos t, \sqrt{2} \sin t \rangle$, $z = 4\cos t \sin t = 2\sin 2t \sin z' = 4\cos 2t = 0$ if t = an odd multiple of $\pi/4$. At $\pi/4$ and $5\pi/4 z'' = -4$ so (2, 1, 2) and (-2, -1, 2) are global maxima and at $3\pi/4$ and $7\pi/4 z'' = 4$ so (-2, 1, -2) and (2, -1, -2) are global minima.
 - b) By using Lagrange multipliers.

 x^2

SOLN: $\nabla f = \lambda \nabla g \Leftrightarrow \langle y, x \rangle = \lambda \langle 2x, 8y \rangle$ leads to the system

$y = 2\lambda x$	Substituting from the second to the first, $y = 16\lambda^2 y$, we know that either
$x = 8\lambda y$	$y = 0$ or $\lambda = \pm \frac{1}{4}$. If $y = 0$ then $x = 0$ and then constraint $x^2 + 4y^2 = 8$ can't
$x^{2} + 4y^{2} = 8$	be met so $\lambda = \pm \frac{1}{4}$ which means $y = \pm \frac{x}{2}$ and substituting into the the
-	ellipse equation, $x^2 + x^2 = 8 \Leftrightarrow x = \pm 2$ meaning that $y = \mp 1$

After investigating we determine that the global max is 2 occurring at (2,1) and (-2,-1) and the global min is -2 occurring at (-2,1) and (2,-1).

9. Find a level surface for the density function $f(x, y, z) = x^2 + y^2 - z^2$ that has the tangent plane 2x + 3y - z = 3. SOLN: The normal to the level surface will be parallel to the normal to the plane if $\overline{\nabla f} = \langle 2x, 2y, -2z \rangle = \lambda \langle 2, 3, -1 \rangle$ so that $\lambda = x = 2y/3 = 2z$ and substituting into the equation of the plane, $2\lambda + 9\lambda/2 - \lambda/2 = 6\lambda = 3$ or $\lambda = 1/2$ and thus $f(1/2, 3/4, 1/4) = (1/2)^2 + (3/4)^2 - (1/4)^2 = 3/4$. So the level surface is $x^2 + y^2 - z^2 = 3/4$