Math 2A - Vector Calculus - Chapter 14 Test - Fall '11 Name
Show your work. Don't use a calculator. Write responses on separate paper.

1. Consider the nice, smooth function $z=f(x, y)$ whose contour map is shown at right.
a. Estimate function values to the nearest tenth to fill in the blank cells in the table below:

$x \backslash y$	0.4	1.0	1.5
0.2	0.05		0.14
0.4			
0.6	0.14		0.42

b. Use the value in your table above to estimate $f_{x}(0.4,1.0)$ and $f_{y}(0.4,1.0)$ to the nearest tenth.
c. Let \vec{v} be the vector from $P(0.6,0.4)$ to $Q(0.2,1.5)$
Compute $D_{\vec{v}} f(0.4,1.0)$ in two ways:

as $\frac{\Delta z}{h}$ and as $\overrightarrow{\nabla z} \cdot \frac{\vec{v}}{|\vec{v}|}$
d. Let \vec{v} be the vector from $P(0.2,0.4)$ to $Q(0.6,1.5)$

Compute $D_{\vec{v}} f(0.4,1.0)$ in two ways: as $\frac{\Delta z}{h}$ and as $\overrightarrow{\nabla z} \cdot \frac{\vec{v}}{|\vec{v}|}$.
2. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x}{\sqrt{x^{2}+y^{2}}}$ does not exist.
3. Sketch level curves $f(x, y)=0, f(x, y)=1 / 2$ and $f(x, y)=1 / 5$ for the function

$$
f(x, y)=\left\{\begin{array}{ccc}
\frac{x^{2}}{x^{2}+y^{2}} & \text { if } & (x, y) \neq(0,0) \\
0 & \text { if } & (x, y)=(0,0)
\end{array} .\right.
$$

4. Find points on the surface $x y+y z+z x-x-z^{2}=0$ where the tangent plane is parallel to the $x y$-plane.
5. Show that $f(x, y)=\arctan (y / x)$ satisfies the two dimensional Laplace equation, $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$.
6. Find the direction in which $f(x, y)=x^{2}+\cos (x y)$ increases most rapidly at the point $P_{0}(1,0)$.
7. Consider $f(x, y)=x^{3}+3 x y+y^{3}$
a. Find the critical points.
b. Find all maxima, minima and saddle points and evaluate the function at those points.
8. Find the absolute max. and min. values of $f(x, y)=x y$ on the ellipse $x^{2}+4 y^{2}=8$ in two ways:
a. By using the parameterization $\langle x, y\rangle=\langle 2 \sqrt{2} \cos t, \sqrt{2} \sin t\rangle$
b. By using Lagrange multipliers.
9. Find a level surface for the density function $f(x, y, z)=x^{2}+y^{2}-z^{2}$ that has the tangent plane $2 x+3 y-z=3$.

Math 2A - Vector Calculus - Chapter 11 Test Solutions - Fall '09

1. Consider the nice, smooth function $z=f(x, y)$ whose contour map is shown at right.
a) Estimate function values to the nearest tenth to fill in the blank cells in the table below:

$x \backslash y$	0.4	1.0	1.5
0.2	0.05	0.1	0.14
0.4	0.1	0.2	0.3
0.6	0.14	0.3	0.42

b) Use the value in your table above to estimate $f_{x}(0.4,1.0)$ and $f_{y}(0.4,1.0)$ to the nearest tenth.

$$
\begin{aligned}
& f_{x}(0.4,1.0) \approx \frac{\Delta z}{\Delta x}=\frac{0.3-0.1}{0.6-0.2}=\frac{1}{2} \\
& f_{y}(0.4,1.0) \approx \frac{\Delta z}{\Delta y}=\frac{0.3-0.1}{1.5-0.4}=\frac{2}{11}
\end{aligned}
$$

c) Let \vec{v} be the vector from $P(0.6,0.4)$ to $Q(0.2,1.5)$

Compute $D_{\vec{v}} f(0.4,1.0)$ in two ways: as $\frac{\Delta z}{h}$ and as $\overrightarrow{\nabla Z} \cdot \frac{\vec{v}}{|\vec{v}|}$
SOLN: $|\vec{v}|=|\overrightarrow{P Q}|=|\langle 0.2-0.6,1.5-0.4\rangle|=\sqrt{0.16+1.21}=\sqrt{1.37} \approx 1.17$ or 1.2 will do.

$$
\begin{aligned}
& D_{\vec{v}} f(0.4,1.0) \approx \frac{\Delta z}{h}=\frac{0}{h}=0 \text { or } \\
& \overrightarrow{\nabla z} \cdot \frac{\vec{v}}{|\vec{v}|}=\left\langle f_{x}, f_{y}\right\rangle \cdot \frac{\langle-0.4,1.1\rangle}{1.2}=\langle 0.5,0.18\rangle \cdot \frac{\langle-0.4,1.1\rangle}{1.2} \approx \frac{-0.20+0.20}{1.2}=0
\end{aligned}
$$

d) Let \vec{v} be the vector from $P(0.2,0.4)$ to $Q(0.6,1.5)$

Compute $D_{\bar{v}} f(0.4,1.0)$ in two ways: as $\frac{\Delta z}{h}$ and as $\overrightarrow{\nabla z} \cdot \frac{\vec{v}}{|\vec{v}|}$.
SOLN: $|\vec{v}|=|\overrightarrow{P Q}|=|\langle 0.6-0.2,1.5-0.4\rangle|=\sqrt{0.16+1.21}=\sqrt{1.37} \approx 1.2$
So, $D_{\bar{v}} f(0.4,1.0) \approx \frac{\Delta z}{h}=\frac{0.37}{1.2} \approx 0.31$ or

$$
\overrightarrow{\nabla z} \cdot \frac{\vec{v}}{|\vec{v}|}=\left\langle f_{x}, f_{y}\right\rangle \cdot \frac{\langle 0.4,1.1\rangle}{1.2}=\langle 0.5,0.18\rangle \cdot \frac{\langle 0.4,1.1\rangle}{1.2} \approx \frac{0.40}{1.2} \approx 0.33
$$

2. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x}{\sqrt{x^{2}+y^{2}}}$ does not exist.

SOLN: $\lim _{(x, y) \rightarrow(0,0)} \frac{x}{\sqrt{x^{2}+y^{2}}}=\lim _{r \rightarrow 0} \frac{r \cos \theta}{r}=\cos \theta$ is path dependent.
Also, along the line $y=x, \lim _{(x, y) \rightarrow(0,0)} \frac{x}{\sqrt{x^{2}+y^{2}}}=\lim _{x \rightarrow 0} \frac{x}{\sqrt{x^{2}+x^{2}}}=\lim _{x \rightarrow 0} \frac{x}{\sqrt{2}|x|}$ does not exist because $\lim _{x \rightarrow 0^{+}} \frac{x}{\sqrt{2}|x|}=\lim _{x \rightarrow 0^{+}} \frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}} \neq \lim _{x \rightarrow 0^{-}} \frac{x}{\sqrt{2}|x|}=\lim _{x \rightarrow 0^{+}} \frac{-1}{\sqrt{2}}=\frac{-1}{\sqrt{2}}$
3. Sketch level curves $f(x, y)=0, f(x, y)=1 / 2$ and $f(x, y)=1 / 5$ for the function
$f(x, y)=\left\{\begin{array}{ccc}\frac{x^{2}}{x^{2}+y^{2}} & \text { if } & (x, y) \neq(0,0) \\ 0 & \text { if } & (x, y)=(0,0)\end{array}\right.$.
SOLN: $\frac{x^{2}}{x^{2}+y^{2}}=\frac{1}{2} \Leftrightarrow x^{2}=y^{2} \Leftrightarrow y= \pm x \frac{x^{2}}{x^{2}+y^{2}}=\frac{1}{5} \Leftrightarrow 4 x^{2}=y^{2} \Leftrightarrow y= \pm 2 x$

The graphic below is constructed in Mathematica with
ParametricPlot3D[\{\{, , $\left.\left.2\left(\wedge^{\wedge} 2+\wedge 2\right)\right\},\{,, 1 / 2\},\{,-, 1 / 2\},\{-2,, 1 / 5\},\{2,, 1 / 5\}\right\}$, $\{,-2,2\},\{,-2,2\}$, PlotStyle \rightarrow Directive[Opacity[0.5],Thick]].

You see the two lines which form the intersection of the plane $z=1 / 2$ and the lines where the plane $z=1 / 5$ intersects the surface.

This shows, by the way, that there is no limiting value of z as (x, y) approaches $(0,0)$.
4. Find points on the surface $x y+y z+z x-x-z^{2}=0$ where the tangent plane is parallel to the $x y$-plane.
SOLN: This is a level surface for the function $f(x, y, z)=x y+y z+z x-x-z^{2}$, so the gradient vector $\overrightarrow{\nabla f}=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\langle y+z-1, x+z, y+x-2 z\rangle$ is normal to the tangent plane. This means the tangent plane is horizontal only if $f_{x}=y+z-1=0$ and
$f_{y}=x+z=0$. Each of these equations describes a plane, and the intersection of these planes is the line $\vec{r}(t)=\langle-t, 1-t, t\rangle=\langle 0,1,0\rangle-t\langle 1,1,-1\rangle$.
Plug $\vec{r}(t)=\langle-t, 1-t, t\rangle$ into $f(x, y, z)=f(-t, 1-t, t)=-t(1-t)+(1-t) t-t^{2}+t-t^{2}=-t(2 t-$ 1) $=0$
so either $t=0$ or $t=1 / 2$ whence the points where tangent plane is horizontal are $(0,1,0)$ and $(-1 / 2,1 / 2,1 / 2)$. To help visualize what's going on here, you might solve the equation for the surface for z :

$$
z^{2}-(x+y) z+x(1-y)=0 \Leftrightarrow z=\frac{x+y \pm \sqrt{(x+y)^{2}-4 x(1-y)}}{2} .
$$

We can then visualize this in Mathematica with the following command:
$\operatorname{Plot} 3 \mathrm{D}\left[\left\{\left\{\left(x+y+\operatorname{Sqrt}\left[(x+y)^{\wedge} 2-4 x(1-y)\right]\right) / 2\right\}\right.\right.$,

$$
\begin{aligned}
& \left\{\left(x+y-\operatorname{Sqrt}\left[(x+y)^{\wedge} 2-4 x(1-y)\right]\right) / 2\right\} \\
& \{0\},\{1 / 2\}\},\{x,-5,5\},\{y,-5,5\}]
\end{aligned}
$$

The graph shows a tilted hyperboloid of one sheet with the two tangent planes almost dead edge-on.
5. Show that $f(x, y)=\arctan (y / x)$ satisfies the two dimensional Laplace equation,

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0 \\
& \nabla f(x, y)
\end{aligned}=\left\langle\frac{d}{d x} \arctan (y / x), \frac{d}{d y} \arctan (y / x)\right\rangle .
$$

This is kind of interesting in polar form: $f(r \cos \theta, r \sin \theta)=\arctan (\tan \theta)=\left\{\begin{array}{c}\theta \\ \theta+\pi\end{array}\right.$ and $\nabla f(r, \theta)=\left\langle\frac{d}{d r} \arctan (\theta), \frac{d}{d \theta} \theta\right\rangle=\langle 0,1\rangle$
6. Find the direction in which $f(x, y)=x^{2}+\cos (x y)$ increases most rapidly at the point $P_{0}(1,0)$.
SOLN: $\vec{\nabla} f(1,0)=\left.\langle 2 x-y \sin x y,-x \sin x y\rangle\right|_{(1,0)}=\langle 2,0\rangle$ so f grows at a rate of $2 / 1$ in that direction.
7. Consider $f(x, y)=x^{3}+3 x y+y^{3}$
a) Find the critical points.

SOLN: $f_{x}=3 x^{2}+3 y=0 \Leftrightarrow y=-x^{2}$ and $f_{y}=3 x+3 y^{2}=0 \Leftrightarrow x=-y^{2}$, substituting, we get $y=-\left(-y^{2}\right)^{2}=-y^{4} \Leftrightarrow y=0$ or $y=-1$, leading to critical points $(0,0)$ and $(-1,-$ 1).
b) Find all maxima, minima and saddle points and evaluate the function at those points.

SOLN: $D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=(6 x)(6 y)-3^{2}=36 x y-9$ is positive at $(-1,-1)$ where $f_{x x}=$ $-6<0$, so this is a local maximum. The point $(0,0)$ has $D<0$ so the point is a saddle. In the diagram below, the local max at $(-1,-1,1)$ seems evident. The saddle is a little more subtle. Look at the curves $\vec{r}_{1}=\left\langle t, t, 2 t^{3}+3 t^{2}\right\rangle$ and $\vec{r}_{2}=\left\langle t,-t,-3 t^{2}\right\rangle$ are shown on the plot and you can see the first is curving up at $(0,0,0)$ and the other is curving down.

8. Find the absolute max. and min. values of $f(x, y)=x y$ on the ellipse $x^{2}+4 y^{2}=8$ in two ways
a) By using the parameterization $\langle x, y\rangle=\langle 2 \sqrt{2} \cos t, \sqrt{2} \sin t\rangle$

SOLN: Along the path $\langle x, y\rangle=\langle 2 \sqrt{2} \cos t, \sqrt{2} \sin t\rangle, z=4 \cos t \sin t=2 \sin 2 t$ so $z^{\prime}=$ $4 \cos 2 t=0$
if $t=$ an odd multiple of $\pi / 4$. At $\pi / 4$ and $5 \pi / 4 z "=-4$ so $(2,1,2)$ and $(-2,-1,2)$ are global maxima and at $3 \pi / 4$ and $7 \pi / 4 z "=4$ so $(-2,1,-2)$ and $(2,-1,-2)$ are global minima.
b) By using Lagrange multipliers.

SOLN: $\nabla f=\lambda \nabla g \Leftrightarrow\langle y, x\rangle=\lambda\langle 2 x, 8 y\rangle$ leads to the system

$$
\begin{array}{rlr}
y=2 \lambda x & & \text { Substituting from the second to the first, } y=16 \lambda^{2} y, \text { we know that either } \\
x=8 \lambda y & & \begin{array}{l}
y=0 \text { or } \lambda= \pm 1 / 4 . \text { If } y=0 \text { then } x=0 \text { and then constraint } x^{2}+4 y^{2}=8 \text { can't } \\
\text { be met so } \lambda= \pm 1 / 4 \text { which means } y= \pm x / 2 \text { and substituting into the the } \\
x^{2}+4 y^{2}=8
\end{array} \\
& \text { ellipse equation, } x^{2}+x^{2}=8 \Leftrightarrow x= \pm 2 \text { meaning that } y=\mp 1
\end{array}
$$

After investigating we determine that the global max is 2 occurring at $(2,1)$ and $(-2,-1)$ and the global min is -2 occurring at $(-2,1)$ and $(2,-1)$.

9. Find a level surface for the density function $f(x, y, z)=x^{2}+y^{2}-z^{2}$ that has the tangent plane $2 x+3 y-z=3$.
SOLN: The normal to the level surface will be parallel to the normal to the plane if $\overrightarrow{\nabla f}=\langle 2 x, 2 y,-2 z\rangle=\lambda\langle 2,3,-1\rangle$ so that $\lambda=x=2 y / 3=2 z$ and substituting into the equation of the plane, $2 \lambda+9 \lambda / 2-\lambda / 2=6 \lambda=3$ or $\lambda=1 / 2$ and thus $f(1 / 2,3 / 4,1 / 4)=(1 / 2)^{2}+(3 / 4)^{2}-(1 / 4)^{2}=3 / 4$. So the level surface is $x^{2}+y^{2}-z^{2}=3 / 4$

