Math 2A - Multivariate Calculus - Chapter 15 Test - Fall '11 Name \qquad
Show work for credit. Write all responses on separate paper. No calculators.

1. Find the volume the tetrahedron bounded by $2 x=5 y$, $3 x+5 y+z=25, z=0$ and $x=0$ by setting up and evaluating an iterated integral. See the diagram at right.
2. Sketch the region of integration for
$\int_{0}^{\sqrt{3}} \int_{\arctan x}^{\pi / 3} f(x, y) d y d x$ and change the order of integration.
3. Define the improper integral

$$
I=\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d A=\lim _{a \rightarrow \infty} \iint_{S_{a}} e^{-\left(x^{2}+y^{2}\right)} d A
$$

where S_{a} is the square with vertices
$(-a,-a),(a,-a),(a, a)$ and $(-a, a)$.
Use this to show that $\int_{\infty}^{\infty} e^{-x^{2}} d x \int_{\infty}^{\infty} e^{-y^{2}} d y=\pi$
4. Evaluate $\iiint_{E} x d V$ is bounded by the cylinder $x+z^{2}=4$, and the planes $x+y=4, x=0, y=0$, and $z=0$.
5. Consider the density $\rho(x, y, z)=1+x^{2}+y^{2}+z^{2}$ over the volume bounded by $x^{2}+z^{2}=4, x+2 y=2$, $z=0, y=0$ and $x=0$, as shown at right.
Set up but do not evaluate three iterated integrals to compute moments about the
a. $x y$-plane.
b. $x z$-plane.
c. yz-plane.

6. Use spherical coordinates to find the volume of the part of a sphere of $\rho=\cos \phi$ that lies between the cones $\phi=\pi / 4$ and $\phi=\pi / 3$.
7. Determine the value of $\iint_{D} \sqrt{\frac{x+y}{x-2 y}} d A$ where D is the region in \mathbb{R}^{2} enclosed by the lines $y=\frac{x}{2}, y=0$, and $x+y=1$. Hint: make a convenient change of variables.

Math 2A - Multivariate Calculus - Chapter 15 Test Solutions.

1. Find the volume the tetrahedron bounded by $2 x=5 y$, $3 x+5 y+z=25, z=0$ and $x=0$ by setting up and evaluating an iterated integral. See the diagram at right. SOLN: The point of intersection of the planes with the $x y$-plane is the point satisfying the system $3 x+5 y=25$ that is, $(x, y)=(5,2)$. To evaluate this as a single integral, do the bound for y last: $\frac{2 x}{5} \leq y \leq \frac{25-3 x-z}{5}$. Then you can evaluate either $\int_{0}^{5} \int_{0}^{25-3 x} \int_{\frac{2 x}{5}}^{\frac{25-3 x-z}{5}} d y d z d x$ or $\int_{0}^{5} \int_{0}^{\frac{25-z}{3}} \int_{\frac{2 x}{5}}^{\frac{25-3 x-z}{5}} d y d x d z$. Other iterations mean splitting

the integral into two parts. Here are the computations:

$$
\begin{aligned}
& \int_{0}^{5} \int_{0}^{25-5 x^{\frac{25-3 x-z}{5}}} \int_{\frac{2 x}{5}}^{5} d y d z d x=\int_{0}^{5} \int_{0}^{25-5 x} \frac{25-5 x-z}{5} d z d x=\frac{1}{5} \int_{0}^{5}(25-5 x) z-\left.\frac{z^{2}}{2}\right|_{0} ^{25-5 x} d x \\
& =\frac{1}{5} \int_{0}^{5}(25-5 x)^{2}-\frac{(25-5 x)^{2}}{2} d x=\frac{1}{10} \int_{0}^{5}(25-5 x)^{2} d x \\
& =-\left.\frac{1}{150}(25-5 x)^{3}\right|_{0} ^{5}=0+\frac{625}{6}
\end{aligned}
$$

2. Sketch the region of integration for $\int_{0}^{\sqrt{3}} \int_{\arctan x}^{\pi / 3} f(x, y) d y d x$ and change the order of integration.
SOLN: Using Mathematica, the following plot illustrates the region of integration:

SOLN: $y=\arctan x \Leftrightarrow x=\tan y$, so switching the bounds of integration yields $\int_{0}^{\pi / 3} \int_{0}^{\tan y} f(x, y) d x d y$
3. Define the improper integral
where S_{a} is the square with vertices
and
Use this to show that
SOLN: Substitute
so that

- . Since the integrand is separable,
, which implies that

4. Evaluate is bounded by the cylinder , and the planes $x+y=4, x=0, y=0$, and $z=0$.

SOLN: We can visualize the boundary of this region by using ParametricPlot3D in Mathematica: p1=ParametricPlot3D[\{4-u^2,v,u\},\{u,0,2\},\{v,0,u^2\}] p2=ParametricPlot3D[\{u,4-u,v\},\{u,0,4\},\{v,0,Sqrt[4-u]\}]

Show[p1,p2]

An integral for computing the integral is
\qquad
5. Consider the density $\rho(x, y, z)=1+x^{2}+y^{2}+z^{2}$ over the volume bounded by $x^{2}+z^{2}=4, x+2 y=2, z=0$, $x=0$ and $y=0$, as shown at right.
Set up but do not evaluate three iterated integrals to compute moments about the
a. $x y$-plane.

$$
M_{x y}=\int_{0}^{2} \int_{0}^{\sqrt{4-z^{2}}} \int_{0}^{\frac{2-x}{2}} z\left(1+x^{2}+y^{2}+z^{2}\right) d y d x d z
$$

b. $x z$-plane.

$$
M_{x z}=\int_{0}^{1} \int_{0}^{2-2 y} \int_{0}^{\sqrt{\left(4-x^{2}\right)}} x\left(1+x^{2}+y^{2}+z^{2}\right) d z d y d y
$$

c. $y z-$ plane.

$$
M_{y z}=\int_{0}^{2} \int_{0}^{4-x} \int_{0}^{\sqrt{\left(4-x^{2}\right)}} x\left(1+x^{2}+y^{2}+z^{2}\right) d z d y d x
$$

6. Use spherical coordinates to find the volume of the part of a sphere of $\rho=\cos \phi$ that lies between the cones $\phi=\pi / 4$ and $\phi=\pi / 3$.
SOLN: $\int_{0}^{2 \pi} \int_{\pi / 4}^{\pi / 3} \int_{0}^{\cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta=\frac{2 \pi}{3} \int_{\pi / 4}^{\pi / 3} \cos ^{3} \phi \sin \phi d \phi=-\left.\frac{\pi}{6} \cos ^{4} \phi\right|_{\frac{\pi}{4}} ^{\frac{\pi}{3}}=-\frac{\pi}{6}\left(\frac{1}{16}-\frac{1}{4}\right)=\frac{\pi}{32}$
7. Determine the value of $\iint_{D} \sqrt{\frac{x+y}{x-2 y}} d A$ where D is the region in \mathbb{R}^{2} enclosed by the lines $y=\frac{x}{2}, y=0$, and $x+y=1$. Hint: make a convenient change of variables.
SOLN: Let $u=x+y$ and $v=x-2 y$ so that $3 x=2 u+v$ and $3 y=u-v$, whence $\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\begin{array}{cc}\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3}\end{array}\right|=\left|-\frac{2}{9}-\frac{1}{9}\right|=\frac{1}{3}$ and the boundary $y=\frac{x}{2}$ becomes $v=0, y=0$ is transformed to $v=0$ and $x+y=1$ to $u=1$, so that $\iint_{D} \sqrt{\frac{x+y}{x-2 y}} d A=\frac{1}{3} \int_{0}^{1} \int_{0}^{u} \sqrt{\frac{u}{v}} d v d u=\left.\frac{2}{3} \int_{0}^{1} \sqrt{u v}\right|_{0} ^{u} d u=\frac{1}{3}$

Plot $\{x / 2,1-x\},\{x, 0,1\}]$

ParametricPlot $\{\{u, u\},\{\mathbf{1}, u\},\{u, \mathbf{0}, \mathbf{1 \}}\}$

