Math 2A - Stewart, Early Transcendentals, 6e, 7.4\#55

A function is called homogeneous of degree \boldsymbol{n} if it satisfies the equation $f(t x, t y)=t^{n} f(x, y)$ for all t, where n is a positive integer and f has continuous second order partial derivatives.
(a) $f(x, y)=x^{2} y+2 x y^{2}+5 y^{3}$ is homogeneous. This is easy.
(b) Show that if f is homogeneous of degree n, then $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=n f(x, y)$

SOLN: Let $g(t)=f(t x, t y)-t^{n} f(x, y)=0$.
Then $g^{\prime}(t)=x f_{x}(t x, t y)+y f_{y}(t x, t y)-n t^{n-1} f(x, y)=0$
Since this must be true for all $t . g^{\prime}(1)=x f_{x}(x, y)+y f_{y}(x, y)-n f(x, y)=0$ and bingo!

Follow-up: Note that $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=\overrightarrow{\nabla f} \cdot\langle x, y\rangle=n f(x, y)$. In higher dimensions with the domain vector $\vec{X}=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle=n f(\vec{x})$, this generalizes to $\overrightarrow{\nabla f} \cdot \vec{x}=n f(\vec{x})$ and the proof above works just fine, but the result is actually stronger: a theorem known as Euler's theorem for homogeneous functions, which states that if $f: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$ is differentiable then it is homogeneous if and only if $\overrightarrow{\nabla f} \cdot \vec{x}=n f(\vec{x})$. We've proved that if it's homogeneous then $\overrightarrow{\nabla f} \cdot \vec{x}=n f(\vec{x})$. Can you prove the reverse? That is, if $\overrightarrow{\nabla f} \cdot \vec{x}=n f(\vec{x})$ then f is homogeneous?

