Math 2A – Stewart, Early Transcendentals, 6e, 7.4#55

A function is called **homogeneous of degree** *n* if it satisfies the equation $f(tx, ty) = t^n f(x, y)$ for all *t*, where *n* is a positive integer and *f* has continuous second order partial derivatives.

- (a) $f(x,y) = x^2y + 2xy^2 + 5y^3$ is homogeneous. This is easy.
- (b) Show that if f is homogeneous of degree n, then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = nf(x, y)$ SOLN: Let $g(t) = f(tx, ty) - t^n f(x, y) = 0$. Then $g'(t) = xf_x(tx, ty) + yf_y(tx, ty) - nt^{n-1}f(x, y) = 0$

Since this must be true for all t. $g'(1) = xf_x(x, y) + yf_y(x, y) - nf(x, y) = 0$ and bingo!

Follow-up: Note that $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = \overline{\nabla f} \cdot \langle x, y \rangle = nf(x, y)$. In higher dimensions with the domain vector $\vec{x} = \langle x_1, x_2, ..., x_m \rangle = nf(\vec{x})$, this generalizes to $\overline{\nabla f} \cdot \vec{x} = nf(\vec{x})$ and the proof above works just fine, but the result is actually stronger: a theorem known as Euler's theorem for homogeneous functions, which states that if $f : \mathbb{R}^m_+ \to \mathbb{R}$ is differentiable then it is homogeneous if and only if $\overline{\nabla f} \cdot \vec{x} = nf(\vec{x})$. We've proved that if it's homogeneous then $\overline{\nabla f} \cdot \vec{x} = nf(\vec{x})$. Can you prove the reverse? That is, if $\overline{\nabla f} \cdot \vec{x} = nf(\vec{x})$ then *f* is homogeneous?