Show your work for credit. Write all responses on separate paper. Do not abuse a calculator.

1. Let $\vec{F}=\langle\sin y, x \cos y, \cos z\rangle$.
a. Show that \vec{F} is a gradient field
b. Evaluate $\oint_{C} \vec{F} \cdot \overrightarrow{d r}$ where C is the curve $\vec{r}(t)=\langle\cos t, 2 \sin t, \cos 2 t\rangle, 0 \leq t \leq 2 \pi$.
2. Evaluate $\oint_{C} \vec{F} \cdot \overrightarrow{d r}$ for $\vec{F}=\langle z-y, x-z, y-x\rangle$ and $C: \vec{r}(t)=\langle\cos t, \sin t, 1\rangle$
a. directly as a line integral.
b. using Stokes' theorem.
3. Evaluate the surface integral
$\iint_{S} \sqrt{1+x^{2}+y^{2}} d S$ where $S=S_{1}+S_{2}+S_{3}$ as shown in the diagram. Note that the surfaces can be parameterized as
$S_{1}: \vec{r}(\theta, z)=\langle\cos \theta, \sin \theta, z\rangle$, where
$0 \leq \theta \leq 2 \pi$ and $0 \leq z \leq 1+\cos \theta$,
$S_{2}: \vec{r}(R, \theta)=\langle R \cos \theta, R \sin \theta, 0\rangle$, where
$0 \leq R \leq 1$ and $0 \leq \theta \leq 2 \pi$, and
$S_{3}: \vec{r}(R, \theta)=\langle R \cos \theta, R \sin \theta, 1+R \cos \theta\rangle$
where $0 \leq R \leq 1$ and $0 \leq \theta \leq 2 \pi$.

4. Let $\vec{F}=\langle z x, y z, x y\rangle$.
a. Compute the flux of \vec{F} through the surface S of problem \#3, above.
b. Use Stokes' Theorem to compute
$\iint_{S} \vec{\nabla} \times \vec{F} \cdot \overrightarrow{d S}$ where S is the part of the sphere $x^{2}+y^{2}+z^{2}=49$ that lies inside the cylinder $x^{2}+y^{2}=36$ and above the $x y$-plane, as shown at right.

Math 2A - Chapter 16 Problem Solutions - Fall '11

1. Let $\vec{F}=\langle\sin y, x \cos y, \cos z\rangle$.
a. Show that \vec{F} is a gradient field

SOLN: $\vec{F}=\overrightarrow{\nabla f}$ where $f(x, y, z)=x \sin y+\sin z$
b. Evaluate $\oint_{C} \vec{F} \cdot \overrightarrow{d r}$ where C is the curve $\vec{r}(t)=\langle\cos t, 2 \sin t, \cos 2 t\rangle, 0 \leq t \leq 2 \pi$.

SOLN: The quick answer here is that this is zero because the fundamental theorem of line integrals says $\oint_{C} \vec{F} \cdot \overrightarrow{d r}=0$ for any closed curve C in a conservative vector field. Working through the details we have that
$\oint_{C} \vec{F} \cdot \overrightarrow{d r}=\int_{0}^{2 \pi}\langle\sin (2 \sin t), \cos t \cos (2 \sin t), \cos (\cos 2 t)\rangle \cdot\langle-\sin t, 2 \cos t,-2 \sin 2 t\rangle d t=$ $\int_{0}^{2 \pi}-\sin (2 \sin t) \sin t+2 \cos ^{2} t \cos (2 \sin t)-2 \cos (\cos 2 t) \sin 2 t d t$
Now it doesn't seem readily obvious how to evaluate this using the FTC. In general, we have

$$
\oint_{C} \overrightarrow{\nabla f} \cdot \overrightarrow{d r}=\oint_{C}\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle \cdot\langle d x, d y, d z\rangle=\int_{a}^{b} \frac{d}{d t} f(t) d t=f(\vec{r}(b))-f(\vec{r}(a))
$$

In this case that would be $f(1,0,1)-f(1,0,1)=0$. Breaking it down to the individual components, say, $\int_{a}^{b} \frac{\partial f(x, y, z)}{\partial x} \frac{d x}{d t} d t=-\int_{0}^{2 \pi} \sin y \sin t d t=-\int_{0}^{2 \pi} \sin (2 \sin t) \sin t d t$, substitute $u=\sin t$ so that $d u=\cos t d t$ and the integral becomes $-\int_{0}^{0} \frac{u \sin (2 u) d u}{\sqrt{1-u^{2}}}=0$. Similarly, $\int_{a}^{b} \frac{\partial f(x, y, z)}{\partial y} \frac{d y}{d t} d t=$ $\int_{0}^{2 \pi} 2 x \cos y \cos t d t=\int_{0}^{2 \pi} 2 \cos ^{2} t \cos (2 \sin t) d t$. Substituting $u=\sin t$ we have $d u=\cos t d t$ whence this integral becomes $\int_{1}^{1} 2 \sqrt{1-u^{2}} \sin 2 u d u=0$.
2. Evaluate $\oint_{C} \vec{F} \cdot \overrightarrow{d r}$ for $\vec{F}=\langle z-y, x-z, y-x\rangle$ and $C: \vec{r}(t)=\langle\cos t, \sin t, 1\rangle$
a. directly as a line integral.

SOLN: $\oint_{C} \vec{F} \cdot \overrightarrow{d r}=\int_{0}^{2 \pi}\langle 1-\sin t, \cos t-1, \sin t-\cos t\rangle \cdot\langle-\sin t, \cos t, 0\rangle d t$

$$
=\int_{0}^{2 \pi}-\sin t+\sin ^{2} t+\cos ^{2} t-\cos t d t=t+\cos t-\left.\sin t\right|_{0} ^{2 \pi}=2 \pi
$$

b. using Stokes' theorem.

SOLN: The simplest surface surrounded by this boundary is $\vec{r}(R, \theta)=\langle R \cos \theta, R \sin \theta, 1\rangle$ for which $\overrightarrow{d S}=\left(\vec{r}_{R} \times \vec{r}_{\theta}\right) d R d \theta=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \cos \theta & \sin \theta & 0 \\ -R \sin \theta & R \cos \theta & 0\end{array}\right| d R d \theta=\langle 0,0, R\rangle d R d \theta$
We compute the curl by

$$
\begin{aligned}
\vec{\nabla} \times \vec{F}= & \left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
z-y & x-z & y-x
\end{array}\right|=\langle 1-(-1), 1-(-1), 1-(-1)\rangle=\langle 2,2,2\rangle \text { so that } \\
& \oint_{C} \vec{F} \cdot \overrightarrow{d r}=\iint_{D} \vec{\nabla} \times \vec{F} \cdot \overrightarrow{d S}=\iint_{D}\langle 2,2,2\rangle \cdot\langle 0,0, R\rangle d R d \theta=\int_{0}^{2 \pi} \int_{0}^{1} 2 R d R d \theta=2 \pi
\end{aligned}
$$

3. Evaluate the surface integral $\iint_{S} \sqrt{1+x^{2}+y^{2}} d S$ where $S=S_{1}+S_{2}+S_{3}$ as shown in the diagram.
Note that the surfaces can be parameterized as
$S_{1}: \vec{r}(\theta, z)=\langle\cos \theta, \sin \theta, z\rangle$, where
$0 \leq \theta \leq 2 \pi$ and $0 \leq z \leq 1+\cos \theta$,
$S_{2}: \vec{r}(R, \theta)=\langle R \cos \theta, R \sin \theta, 0\rangle$, where
$0 \leq R \leq 1$ and $0 \leq \theta \leq 2 \pi$, and
$S_{3}: \vec{r}(R, \theta)=\langle R \cos \theta, R \sin \theta, 1+R \cos \theta\rangle$
where $0 \leq R \leq 1$ and $0 \leq \theta \leq 2 \pi$.

SOLN: $\iint_{S} \sqrt{1+x^{2}+y^{2}} d S=+\iint_{S_{1}} \sqrt{1+x^{2}+y^{2}} d S+\iint_{S_{2}} \sqrt{1+x^{2}+y^{2}} d S+\iint_{S_{3}} \sqrt{1+x^{2}+y^{2}} d S$
For $S_{1}: \vec{r}(\theta, z)=\langle\cos \theta, \sin \theta, z\rangle, d S=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right| d \theta d z=|\langle\cos \theta, \sin \theta, 0\rangle| d \theta d z=d \theta d z$
So $\iint_{S_{1}} \sqrt{1+x^{2}+y^{2}} d S=\int_{0}^{2 \pi} \int_{0}^{1+\cos \theta} \sqrt{2} d \theta d z=\sqrt{2} \int_{0}^{2 \pi} 1+\cos \theta d \theta=2 \sqrt{2} \pi$
For $S_{2}: \vec{r}(R, \theta)=\langle R \cos \theta, R \sin \theta, 0\rangle, d S=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ -R \sin \theta & R \cos \theta & 0 \\ \cos \theta & \sin \theta & 0\end{array}\right| d \theta d R=|\langle 0,0,-R\rangle| d \theta d R$
So $\iint_{S_{2}} \sqrt{1+x^{2}+y^{2}} d S=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{1+R^{2}} R d R d \theta=\pi \int_{1}^{2} \sqrt{u} d u=\left.\frac{2 \pi}{3} u^{\frac{3}{2}}\right|_{1} ^{2}=\frac{2 \pi}{3}(2 \sqrt{2}-1)$
For $S_{3}: \vec{r}(R, \theta)=\langle R \cos \theta, R \sin \theta, 1+R \cos \theta\rangle, d S=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \cos \theta & \sin \theta & \cos \theta \\ -R \sin \theta & R \cos \theta & -R \sin \theta\end{array}\right| d R d \theta=$ $|\langle-R, 0, R\rangle| d R d \theta$ so $\iint_{S_{3}} \sqrt{1+x^{2}+y^{2}} d S=\sqrt{2} \int_{0}^{2 \pi} \int_{0}^{1} \sqrt{1+R^{2}} R d R d \theta=\pi(2-\sqrt{2})$
All together, $\iint_{S} \sqrt{1+x^{2}+y^{2}} d S=2 \sqrt{2} \pi+\frac{2 \pi}{3}(2 \sqrt{2}-1)+\pi(2-\sqrt{2})=\frac{\pi}{3}(4+7 \sqrt{2})$
4. Let $\vec{F}=\langle z x, y z, x y\rangle$.
a. Compute the flux of \vec{F} through the surface S of problem \#3, above.

SOLN: According to Gauss' Theorem (The Divergence Theorem) $\oiint_{S} \vec{F} \cdot \overrightarrow{d S}=\iiint_{E} \vec{\nabla} \cdot \vec{F} d V$. Here $\vec{\nabla} \cdot \vec{F}=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}+\frac{\partial F}{\partial z}=2 z$ so
flux $=\oiint_{S} \vec{F} \cdot \overrightarrow{d S}=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1+\cos \theta} 2 z d z r d r d \theta=\int_{0}^{2 \pi}(1+\cos \theta)^{2} d \theta \int_{0}^{1} r d r=$

$$
=\theta+2 \sin \theta+\frac{\theta}{2}+\left.\frac{\sin 2 \theta}{4}\right|_{0} ^{2 \pi} \frac{1}{2}=\frac{3 \pi}{2}
$$

b. Use Stokes' Theorem to compute
$\iint_{S} \vec{\nabla} \times \vec{F} \cdot \overrightarrow{d S}$ where S is the part of the sphere $x^{2}+y^{2}+z^{2}=49$ that lies inside the cylinder $x^{2}+y^{2}=36$ and above the $x y$-plane, as shown at right.
SOLN: The boundary of the surface is $\vec{r}=\langle 6 \cos t, 6 \sin t, \sqrt{13}\rangle$

$$
\begin{aligned}
& \iint_{S} \vec{\nabla} \times \vec{F} \cdot \overrightarrow{d S}=\oint_{C} \vec{F} \cdot \overrightarrow{d r}=\int_{0}^{2 \pi}\langle 6 \sqrt{13} \cos t, 6 \sqrt{13} \sin t, 36 \cos t \sin t\rangle\langle-6 \sin t, 6 \cos t, 0\rangle d t \\
& \quad=\int_{0}^{2 \pi} 0 d t=0
\end{aligned}
$$

On the other hand, the surface integral is computed by finding
$\vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ z x & z y & x y\end{array}\right|=\langle x-y, x-y, 0\rangle$ and parameterizing the sphere as
$\vec{r}(\phi, \theta)=\langle 7 \sin \phi \cos \theta, 7 \sin \phi \sin \theta, 7 \cos \phi\rangle$, we have
$\vec{r}_{\phi} \times \vec{r}_{\theta}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 7 \cos \phi \cos \theta & 7 \cos \phi \sin \theta & -7 \sin \phi \\ -7 \sin \phi \sin \theta & 7 \sin \phi \cos \theta & 0\end{array}\right|=$
$\left\langle 49 \sin ^{2} \phi \cos \theta, 49 \sin ^{2} \phi \sin \theta, 49 \cos \phi \sin \phi\right\rangle$ so that $\left|\vec{r}_{\phi} \times \vec{r}_{\theta}\right|=49 \sin \phi$.
$\overrightarrow{d S}=49\langle\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi\rangle \sin \phi d \phi d \theta$
And so (check this)
$\iint_{S} \vec{\nabla} \times \vec{F} \cdot \overrightarrow{d S}=$
$\int_{0}^{\arcsin \frac{6}{7}} \int_{0}^{2 \pi} 343 \sin \phi(\cos \theta-\sin \theta)\langle 1,1,0\rangle \cdot\langle\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi\rangle \sin \phi d \phi d \theta$

$$
=343 \int_{0}^{\arcsin \frac{6}{7}} \sin ^{3} \phi d \phi \int_{0}^{2 \pi} \cos 2 \theta d \theta=0
$$

