
Math 2A – Chapter 16 Problems – Fall ‘11.   Name______________________________ 
Show your work for credit.  Write all responses on separate paper.  Do not abuse a calculator. 

 
1. Let 〈sin , cos , cos 〉.    

a. Show that  is a gradient field  
b. Evaluate ∮ ⋅  where C is the curve 〈cos , 2 sin , cos 2 〉,			0 2  . 

 
2. Evaluate  ∮ ⋅  for 〈 , , 〉 and C: 〈cos 	 , sin , 1〉 

a. directly as a line integral. 
b. using Stokes’ theorem. 

 
 

3. Evaluate the surface integral ∬ 1  where  as 
shown in the diagram.  Note that the surfaces can 
be parameterized as 	: , 〈cos , sin , 〉	,  where   
       0 2  and 0 1 cos , : , 〈 cos , sin , 0〉,  where  
       0 1 and 0 2 , and : , 〈 cos , sin , 1 cos 〉  
       where 0 1 and 0 2 . 

 
4. Let 〈 , , 〉.   

a. Compute the flux of  through the surface 	of 
problem #3, above. 
 

b. Use Stokes’ Theorem to compute  ∬ ⋅  where S is the part of the sphere 49 that lies inside the cylinder 36 and above the xy-plane, as 
shown at right.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Math 2A – Chapter 16 Problem Solutions  – Fall ‘11 
 

1. Let 〈sin , cos , cos 〉.    
a. Show that  is a gradient field  

SOLN:   where , , sin sin 	 
b. Evaluate ∮ ⋅  where C is the curve 〈cos , 2 sin , cos 2 〉,			0 2  . 

SOLN:  The quick answer here is that this is zero because the fundamental theorem of line integrals 
says ∮ ⋅ 0 for any closed curve C in a conservative vector field.  Working through the 
details we have that ∮ ⋅ 〈sin 2 sin , cos cos 2 sin , cos cos 2 〉 ⋅ 〈 sin , 2 cos , 2 sin 2 〉 	 	 sin 2 sin sin 2	cos cos 2 sin 2 cos cos 2 sin 2  

Now it doesn’t seem readily obvious how to evaluate this using the FTC.   In general, we have ⋅ 〈 , , 〉 ⋅ 〈 , , 〉  

In this case that would be 1,0,1 1,0,1 0.  Breaking it down to the individual components, 
say,  , , 	 sin sin sin 2 sin sin , substitute sin  so 

that cos  and the integral becomes √ 0.  Similarly, , , 	2 cos 	cos 2	cos cos 2 sin .  Substituting sin  we have  cos  
whence this integral becomes 2√1 sin 2 0. 

2. Evaluate  ∮ ⋅  for 〈 , , 〉 and C: 〈cos 	 , sin , 1〉 
a. directly as a line integral. 

SOLN:  ∮ ⋅ 〈1 sin , cos 1, sin cos 〉 ⋅ 〈 sin , cos , 0〉  sin sin cos cos cos sin | 2  

b. using Stokes’ theorem. 
SOLN:  The simplest surface surrounded by this boundary is , 〈 cos , sin , 1〉 for 

which 
̂ ̂cos sin 0sin cos 0 〈0,0, 〉  

We compute the curl by  ̂ ̂ 〈1 1 , 1 1 , 1 1 〉 〈2,2,2〉 so that  

⋅ ⋅ 〈2,2,2〉 ⋅ 〈0,0, 〉 2 2  

 
  



3. Evaluate the surface integral ∬ 1  
where  as shown in the diagram.  
Note that the surfaces can be parameterized as 	: , 〈cos , sin , 〉	,  where   
       0 2  and 0 1 cos , : , 〈 cos , sin , 0〉,  where  
       0 1 and 0 2 , and : , 〈 cos , sin , 1 cos 〉  
       where 0 1 and 0 2 .  

 
SOLN: ∬ 1 ∬ 1 ∬ 1 ∬ 1  

For : , 〈cos , sin , 〉	,  ̂ ̂sin cos 00 0 1 |〈cos , sin , 0〉|    

So ∬ 1 √2 √2 1 cos 2√2  

For : , 〈 cos , sin , 0〉,  ̂ ̂sin cos 0cos sin 0 |〈0,0, 〉|   

So ∬ 1 √1 √ 2√2 1    

For : , 〈 cos , sin , 1 cos 〉, ̂ ̂cos sin cossin cos sin|〈 , 0, 〉|  so ∬ 1 √2 √1 2 √2  

All together, ∬ 1 2√2 2√2 1 2 √2 4 7√2  
 
4. Let 〈 , , 〉.   

a. Compute the flux of  through the surface 	of problem #3, above. 
SOLN: According to Gauss’ Theorem (The Divergence Theorem) ∯ ⋅ ∭ ⋅ .  Here ⋅ 2  so  

flux = ∯ ⋅ 2 	 1 cos  2 sin 2 sin 24 12 32 	 
b. Use Stokes’ Theorem to compute  ∬ ⋅  where S is the part of the sphere 49 

that lies inside the cylinder 36 and above the xy-plane, 
as shown at right. 
SOLN:  The boundary of the surface is 〈6 cos , 6 sin , √13〉 ⋅ ⋅ 〈6√13 cos , 6√13 sin , 36 cos sin 〉〈 6 sin , 6 cos , 0〉  

= 0 0. 
 
 



On the other hand, the surface integral is computed by finding 

 
̂ ̂ 〈 , , 0〉 and parameterizing the sphere as 

, 〈7 sin cos , 7 sin sin , 7 cos 〉, we have ̂ ̂7 cos cos 7 cos sin 7 sin7 sin sin 7 sin cos 0〈49 sin cos , 49 sin sin , 49 cos sin 	〉 so that 49 sin .   
 49〈sin	 cos , sin	 sin , cos 	〉 sin  
And so (check this) ∬ ⋅ 343 sin cos sin 〈1,1,0〉 ⋅		 〈sin	 cos , sin	 sin , cos 	〉 sin  343 sin cos 2		 0 


