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(b) For what angle @ is the satellite closest to the earth? (a) On the same viewing screen, graph the circlp = %,
Find the height of the satellite above the earth’s surface and the new orbit equation, with & increasing from (360
for this value of 8, . ’ 347, Deiscribe the new motion of the sateliite, - ©

’ (1) Use the feature on your graphing 'cal-c;tlnmr f
find the value of 8 at the moment the satellite crasheg
into the earth.

Discovery + Discussion
i;? 55. A Transforrr]ation of Polar Graphs How are the graphs
of r = 1 + sin(@ —~ #/6) and 7 = 1 + sin(6 — /3)
related to the graph of r = 1 + sin 07 In general, how is fhe
geaphof r = f(@ — o) related to the graphof r = (g}

56. Choosing a Convenient Coordinate System  Compape
the polar equation of the circle r = 2 with its equation in
rectangular coordinates. In which coordinate system is the.
equation simpler? Do the same for the equation of the four.
leaved rose » = gin 28, Which coordinate system would yoy
choose to study these curves? ’

,gg 54. An Unstable Orbit ‘The orbit described in Exercise 53 is
stable because the satellite traverses the same path over and
over as # increases. Suppose that a meteor strikes the

satellite and changes its orbit to . i
57. Choosing a Convenient Coordinate System Compae

22500(1 — —-) _the rectangular equation of the line y = 2 with its polar equa.
- 40 tion. In which coordinate system is the equation simpler?
4 — cosd : ' _ Which coordinate system would you choose to study Tines?

PoIarForm of ,Coniplex Nﬁiﬁber"s}
‘DelVioivre’s Theorem

e b e i et

Imaginary In this section we repfeéent complex numbers in polar (or trigonometric) form. This
axis enables us to find the nth roots of complex numbers. To describe the polar form of
complex numbers, we must first learn to work with complex nambers graphically.

5 By Graphing Complex Numbers
o . axis  To graph real numbefs br sets of real numbers, we have been using the number ing,
" Figure 1 . which has just one dimension. Complex numbers, however, have two components: 1
) real part and an imaginary part. This suggests that we need two axes to gr_z_tph contr
Tm 4 , plex numbers: one for the real part and one for the imaginary part. We call these (he
| m=24+3 _ ~ real axis and the imaginary axis, respectively. The plane determined by these W0
3iq- 3 axes is called the complex plane. To graph the complex nimber @ + bi, We plot the
S 2i [y bz, =541 _ orgered pair of numbers (a, &) in this plane, as indicated in Fignre 1.
L e 1 : )
T :
4 21 4 Re o . '
T | xample1- Graphing Complex Numbers
i b : I : 7
1 p=3-2i E _ Gr_aph the complex numbers z; =2 + 3i,z; =3 — 2i,and z; + 2.

o Solution Wehavez, + 2z, = (2 -+ 3i) + (3 — 2i} =5 + i The graph is sho\vn.
Flgure 2 _ - in Figure 2. ' '
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Te plural of modulus is moduli.

Graph each set of complex numbers..

(@ S = {a+ bi|az0} () T={a+bila<1,b=0}

Solution : ‘

(4) S is the set of complex numbers whose real part is nonnegative. The graph is
shown in Figure 3(a).

() T'is the set of compiex numbers for which the real’ part is less than 1 and the

1magmary pert is nonnegatwe The graph is shown in Figure 3(b).

I

o 1mJl .

F.igure3 ‘ (ai o : (b) ' - Q

Recall that the absolute value of a real number can be thought of as its distance
from the origin on the real number line (see Section 1.1). We define absolute value
for complex numbers in a similar fashion. Using the Pythagorean Theorem, we can
see from Figure 4 that the distance between a + bi and the origin in the complex
plane is \/g? + p2. This leads to the following definition. .

* The modulus (or absolue value)

"Example 3| Calculating the Modulus
Find the moduli of the complex numbers 3 + 4i and 8 — 5i. '
Solution . |
13+4i] = VF+4=V5E=5
18— 5i| = V& T (=5) = V89 |

Example4 Absolute Vaiue of Complex Numbers
Gxaph each set of complex numbers. '

() C={z|]z] = 1} )] D‘:{z:”zl =1

Solution

{a) Cis the set of complex numbers whose distance from the origin is 1. Thus, Cis
a circle of radius I with center-at the origin, as shown in Figure 5. -
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Tk (b) Dis the set of complex numbers whose distance from the origin is fe

equal to 1. Thus, D is the disk that consists of all complex numbers
side the circle C of part (a), as shown in Figuie 6.

Polar Form of Cbmpiex Numbers

ment joining the origin to the point a + bi (see Figure 7). The length of this
mentis r = |z| = Va® + b% If @ is an angle in standard posifion whose
: ) side coincides with this linie segment, then by the definitions of sine and co
Figure 6 Section 6.2)

a=rcosf . and b=rsing

$0z = rcos @ + irsin f = r{cos 6 - i sin 0). We have shown the following,

Imd
a+ bi

bit

z=r(cos @ + isinf)

0 a Re of z, and 6 is an argument of z.

Figure 7

of 24,

_Writing Complex Numbers in Polar Form

Write each complex number in trigonometric form,
() 1+ ®) —1+ V3 | (©) —4V3—4i () 3+4i

their arguments. -

 Im my “Im4

ria L S o

y D@
et
mr

@ A (O N ©
Figure 8 .

S8 “]iln i
O ang jp, ¢

Letz = a + bi be a complex number, and in the complex plane 16s draw the ling gy,

[Il‘lc SQS,
{ermipg)
SINg (s

A complex number z = a + bi has the polar form (or trigonometric form) -

‘N N where r = |z| = Va® -+ b%and tan § = b/a. The number r is the modulug

i

Solution These complex numbers are graphed in Figure 8, which helps us find
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: z . |
han of ang=1=1 (a) Anargumentis @ = wfdandr = V1 + I = V2. Thus ! l
QUSTIN L 0= o Y SE
" . : : 1+i= '\/i(cosz+isin£) ! _
: _ _ §
Vi © (b) Anargumentis 0 = 2m/3andr = V1 +3 = 2. Thus 1
tan & = :T = =43 . . o ) j :
inf:seg. = I S —1 + V3i= 2(cos? + asm-ng) 1
ine Sﬁg. 7 O Lo . - '_ i : .
erming] - 1 (c) Anargument is § = 7?1'/6 {or we could use @ = —57r/6) and
ine (see tan § == 4\r RY:] = V4§ ¥ 16 = 8. Thus , .
. . .- . S . N . ’ i
6=7 ' ' ' Tar 7o’ : - et
. . : —4\/_—41—8(cosﬁ+zsm—£) : . ' o
S _ 6 6 . i
i 0—§ (@) An argument s =tan ' dandr=V32 + 42 =58 , .
0=t - : 3% 4i = 5[cos(tan )+ zsm(tan 3 &8
- : The addition formulas for sine and cosine that we discussed in Section 7.2 greatly
) smlphfy the multiplication and division of complex numbers in polar form The fol-
‘ _ lowmg theorem shows how.
_ by
Tus <!, Multlpllcatlon and Division of Complex Numbers_ _ | i
If the two complex numbers zy and z, have thc polar forms :
7 z; = ry{cos 6, -+ isin ;) and 7y = rz(cos 8y + i sm 62)
nujtiple then ' Lo : T ‘
. : Hb e
72z = nikyfcos{f, + 8,) + isin(f, + 62)} - Muttiplication - AEHE
_ z_: = ;i cos( — 6,) + isin(f, — 92)] (z #0) Divigion. - - :
o ' Rl
s find :

o - - 'This theorem says:
. To multiply two complex numbers, multiply the moduli and add the arguments.
+di - ‘ 1o divide two complex numbers, divide the moduli and subtract the arguments.

B Proof To prove the multiplication formmila, we simply multiply the two com- - E
plex numbers. : 1 el
g___};c . . . ‘ . ZZy : ]T])'Z(COS 6] + isin 91)('303 82 -+ [ sin 82)

= ryry{cos §, cos B, — sin 0 sin 8, -+ i(sin @, cos 0, -+ cos @, sin 6,)]

= nircos(fy + &) + isin(8, + 0,)]

In the last step we used the addition formulas for sine and cosine. _ B

The proof of the division formula is left as an exercise.
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Mathematics in
the Modern World

8ill Ress/Corbis

Fra ctals

Many of the things we model in
this book have regular predictable
shapes. But recent advances in
mathematics have made it possible
' to model such seemingly random
or even chaotic shapes as those of a
cloud, a ﬁlckermg flame, a moun-
tain, or a jagged coastline. The
basic tools in this type of modeling
are the fractals invented by the

A fractal is a geometric shape built
up from a simple basic shape by
scaling and repeating the shape
indefinitely according to agiven
rule. Fractals have infinite detail;
this means the closer you look, the
more you see, They are also self
similar;, that is, zooming in on a
portion of the fractal yields the
same detail as the criginal shape.

fractals are used by movie makers
to creafe fictional landscapes and
exotic backgrounds.

Although a fractal is'a complex
shape, it is produced according to
very simple rules (see page 603},
This property of fractals is ex-

fures on a compnter called fractal
image compression. In this process
a picture is stored as a simple basic
shape and a rule; repeating the
shape according to the rule pro-
duces the original picture. This is
an extremely efficient method of

color pictures can be put on a
single compact disc.

Tet

* Find (2) zyz; and (b) z,/z,.

* mathematician Benoit Mandetbrot.

Because of their beautiful shapes,

| ploited in a process of storing pic- -

storage; that’s how thousands of -

%

~Example 6 Multiplying and Dividing Complex Numbers

7 = 2(c.os.% + isin %:") " and Z ;.S(COS% + isin%)'

Solution
(a) By the multiplication formula

22, = (2)(5)[003(4 + %) + ism(%% %H

T far
= 10 — 4+ —_—
.(cos 7 isin 12)

To approximate the angwer, weuse a calculator in radian mode and get
2123~ 10(—0.2588 + 0.9659i) = —2.588 + 9.650i
(b) By the division formula

el ) vos(5)

= —%(cosi - 'sinlr '
s\ TP

Using a calculator in radian mode, we get the approximate answer:

- Z_]*. 4(0.9659 — 0.25881) = 0.3864 — 0.1035i e
2 H .

DeMoivre’s Theorem

Repeated use of the multiplication formula gives the following usefut formula for
raising a complex number to a power # for any positive integer .

Ifz = r(cos 0 - i sin 8), then for any integer n

2" = r"(cos nf + isinnd)

This theorem says: To take the nth power of a complex number, we take the nrh powel

of the modulus and multiply the ar gument by n.

n Proof By the multiplication formula
Hcos(d + 6) + tsm(ﬂ + 8)]
r*(cos 20 + i sin 26)

=gz =
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SECTION 8.3 Polar Form of Complex Numbers; DoMoivre's Theorem

) Now wo muhxply 2 by z 1o get”

} 3_* 27 =7 Picos(20 + 6) + 13111(26 +0)] -
= r(cos 30 + isin 30)
Repeating this argument, we see tha_t for any positive integer n
2" = r"(cos n@ + isin nd)

A similar ar gument using the division formula shows that this also holds for ncgatlve
integers.

o E)‘-&amp!e'l Finding a Power Using DelVioivre’s Theorem - =

Hind (5 + 50"

Solution Since  + 3i = 5(1 + 1), it follows from Exampie 5(a) that
' i

So by DeMoivre’s Theorem,

(33" (8 (oG v o057
2 s, hisinTy
2

—_ (05_’”.4_ Sﬂ-)u.i.
'*“20 C82 ISll'l2 32l

nth Roots of Complex Nu‘mbers

An nth root of a complex number z is any complex number w such that w" =z,
DeMoivre’s Theorem gives us a method for calculating the nth roots of any complex
number. '

¥ z = r(cos @ + ¢ sin §) and n is a positive integer, then z has the » distinct

nth roots
. g+ 2k +
LUy = r’/"{cos( ﬂ-) + isin(a——yfz)]
n n
fork=0,1,2,...,n— L. '
E . Proof -To find the nth roots -of z, we need to find a complex number w such that '
w' =z ‘

Tet’s write z in polar form_: ] )
z = r{cos § 1 isin )

] .0
y = r‘l’{"(COS* + ism—) _
' _ n ) H

One nthrootof z is




Wc add 2ar/6 = /3 to each argument
to get the argument of the next reot.

‘Imi
2ifwy
W, Wy
2 -Re
Ws

Figure 9
The six-sixth roots of z = —64
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¥

since by DeMoivre’s Theorem, w" = z, But the argument B of z can be replag
8 + 2kar for any integer k. Since this expression gives a different value of 4,
1,2;. — 1, we have proved the formula in the theorem.

ed by
for = t

The following observations help us use the preceding formula.

W
i

These observations show that, when graphed, the nth roots of z are spaced e

uall
on the c1rcIe of radius " il

: Finding Roots of a Complex Number

Find the six sixth roots of z = —64, and graph these roots in the complex plane.

Solution In polar form, z = 64(cos w + i sin ). Applymg the formula for sty .
roots with n = 6, we get .

: + + 2%
= 64”'{(:03(%) -+ isin(%ﬁ)]

fork =0.1,23, 4, 5. Using 6416 = 2, we find that trhe six sixth roots of —64 are

= 641/5((:03% + isin E) V3

~641f6( T+ '") =2
cos -, i sin 2 i
e £alf6 S _ :
= 64 cos—+zsm—6— = V3 +i
Far - L
— Il’6 — 4+ — = " — I
= 64 (cos isin 5 ) V3 — i 3
3 . 5
Wy = 641”6(003"— + zsm—w) = —2i '
2 .
. ) 2
117 11
ws = 641/‘5(cosT + zsinTﬂ) =V3 i .
.All.these points lie on a circle of radius 2, as shown int Figuré?. L
ngd
When finding roots of complex numbers, we sometimes write the argument Dfd}:
complex number in degrees. In this case, the nth roots are obtained from the fori .
' ‘ - El 13
+ 360°% {8+ 360%
Wy, = rl'r’{cos(-"—6 36 ) + zsin(~—' : )} - gl
\ n : "
_ o : o 1,
fork=0,1,2,...,n — L
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ample 9:: Finding Cube Roots of a Complex Number

Find the three cube roots of z = 2 + 2, 7and graph these roots in the complex plane.

Soiutlon First we write z in polar form using degrees. We have
= V2" + 2 = 2vZand 0 = 45°. Thus

z = 2V2(cos 45° + isin 45°)

Applymg the formuls Tor nth roots (in degrees) with n= 3, we find the cube roots
: ofz are of the form :
\[2"}],’3 — (23,’2)%,’3 . 2],!'2 — \/2

| o 45° + 360°k / 45° -+ 360°%
44360°/3 = 120° (o each : ow=(2V2 )‘f-"[ (“_3““) ¥ ,—Si_n(__w_)]

IV 3
wument to get the argument of the

where k = 0, 1, 2. Thus, the three cube roots are .
wy = V2(cos 15° + isin 15°) ~ 1, 366 + 0.366i
w, = \/Z(cos 135° + isin 135°) = —1 + ¢
w, = V2(cos 255° + 1 5in 255°) ~ —0.366 — 1.366i

equally -

Ane. The three cube roots of z are graphed in Figure 10. These roots are spaced equal!y

for ath ' . onacircle of radius V2, ‘ B

Solvmg an Equation Usmg the nth Roots
_ - Formula '
6 are

Solve the cquation 76 + 64 = 0,

e 10 Solution This equation can be written as z6 = —64, Thus, the solutions are the
ree cube roots of 7 = 2 + 2§ sixth roots of —64, which we found in Example 8. . ]

_Gr'aph the complex nmber and find its modulus. " 7 15-16 m Sketch #y, 73,7, F zz,'and £z, on the same compléx
2, 3 plane.

46 15.2,=2—i,‘22=2+i

6. 7—3i 16, 2= ~1+i, z,=2—3i

8 —1- Y3 | | :

-3 , 17-24 = Sketch the set in the complex plane.
10._—\/2—;_1@ C L {z=a+bila=<0,b=0}

12 % Sketch the complex number z, and also sketch 2z, —z, B fz=atbila>1b>1} ‘

Yo the same complex plane. 19. {z]}z] =3} 20, {Zflzi =1}
2.2 1+ V3

¥ Sketch the complex number z 'md its complex conju- .
N the same complex plane. , 2. {z=a+bilat b <2}

B 14, z=—5+6i 24. {z=a + bila = b}

ol
, formuf _ _ .
' . {z]jz} <2} . 22, {z2 = |z] =5}
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25-48 B Write the complex number in polar form with
argument { between 0 and 24

25. 1+ 26 1+V3i 21 VI VIZi

28.1—1i. 29.2V3 —2i 30, —1+i
3L 3 T3, -3-3V3i 0 3.5+
34. 4 35 4V3 -4 36. 8i
37, —20 - 38 V3 +i 39, 3+ 4i
40. i(2 — 2i) 41, 3i(l + ) 42, 2(1 =)
43, 4(V3 + 1) 44, —3 3 45 2+
46, 3 + V3§ a7. V2 + V2i 48, —ari

4956 ® Find the product z,2, and the quotient z,/z,. Express
your answer in polar form. :

. o Cr L ow
49, z, = cosw -+ isinm, zgzcos§+tsm—

’ 3
50, z, = cos%:- + iéin%, 7 = cos%ﬂ- + t'sin?%Tr
51,z = 3(005% + isin%), 2, = 5((:054—:: + isin%r)
2. 4= 7(ces%” + isi_n%”), 7= 2((:05% + isin%)

53. z; = 4{cos 120° + i sin 120°),
7, = 2{cos 30° -+ i sin 30°)
54. z, = V2(cos 75° + isin 75°),
2, = 3V2{cos 60° + i sin 60°) l
_55; 2= 4{cos 200° + { sin 200°),”
7 = 25(cos 150° + { sin 150°)
56. 7, = 3(cos 25° + i5in25°),
2= Heos 155° + i sin 159

57-64 m Write z; and z, in polar form, and then find the product

77, and the quotients z,/z, and i/z;.
57z, =NI 40, oz =1+ VEE
58. 7, = V2 — VZi, z, =1—i
59,2, =2V3 — 2, z=-L+i
60. z, = —V2i, z,=—3—3V3i
6l 2, =5+5i, =4 62, 2, = 4V3 — 4i, z,=8i
63, 2,=—20, 5 =V3+i 64 z=3+4i, z,=2-2

-65-76 ® Find the indicated power using,DcMoivre’é Theorem.
65, (1 + i) 66. (1 — V3 i) '
67. (2V3 + 208 68. (1—iF

VI V2Z\® .
2 (_2“ + ?1;) 79 (V3 - iy
M. (@2 - 20) 72, (—% - l{i;)”_ '
73 (-1 =) 4. (3 + V3
75, (2V3 + 207 ©76. {1 - )78

1. The square roots of 4V/3 + 4i

--83, The cube rools of §

+

77-86 ® Find the indicated roots, and graph the roots i ghy
complex plane, ' '

78, The cube roots of 4V3 + 4i
79. The fourth roots of —81{
81. The eighth roots of 1

80. The fifth roots of 32

82, The cube roofs of | ﬂ
_ 84. The fifth roots of
85. The fourthroofs of —1
86. The fifth roots of ~16 — 16V/3i -

87-92 = Solve the equation, ‘
88, 22— i=0

87. *+1=0 ,
89, 23 —4V3 —4i=0 90, 2~ 1=0
o1, 22k 1=—i ' 92. 2~ 1=0

T 2w . 2ar . . L
93, (2} Letw = cos— + isin — where 1 is a posilive
n n :

integer. Show that 1, 10, w?, w?, . .

distinet nth roots of 1.

(b) If z # 0is any complex number and 5" = z, show that
the n distinct sth roots of z are

L larethen

s, sw, sw?, sw?, ..., sw" !

Discovery » Discussion

94, Sums of Roots of Unity Find ihe exact values ofall
three cube roots of 1 (see Exercise 93) and then add them.”
Do the same for the fourth, ﬁfth‘ sixth, and eighth rools 0”'}- .
‘What do you think is the sum of the nth roots of 1, {oran)'ﬁt“_'ﬁ;

95.. Products of Roots of Unity .. Find the p;(‘)_cjucl_of the S
three cube roots of 1 (see Exercise 93}, Do the sant for!h‘ b |
fourth, ffth, sixth, and eighth raots of 1, What do you i
is the product of the nth roots of 1, for auy'a? e

96. Complex Coefficients and the Quadratic Eormula

* The quadratic formula works whether the coefﬁcicnisl}f .

equation are real or complex. Solve these equations USINE

quadratic formula, and, if necessary, DeMoivre’s Theo

@) 2 (11 Dz +i=0 o
M) 2—iz+1=0

© 8- (2—z—5i=0

reft




