Math 12 - Precalculus - Take Home Problems for Chapter 7 Test
Write all responses on separate paper. Make your answers as detailed and clear as possible.
Use mathematical induction to prove equation 1, 2 and 3.

1. $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
2. $\sum_{k=1}^{n}(2 k-1)^{3}=n^{2}\left(2 n^{2}-1\right)$
3. $\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{n}{n+1}$
4. Show that the sequence of successive ratios F_{n+1} / F_{n} appears to converge to a number r satisfying the equation $r^{2}=r+1$. (The number r was known as the golden ratio to the ancient Greeks.)
5. Let r satisfy $r^{2}=r+1$. Show that the sequence $s_{n}=A r^{n}$, where A is a constant, satisfies the Fibonacci equation $s_{\mathrm{n}}=s_{\mathrm{n}-1}+s_{\mathrm{n}-2}$ for $\mathrm{n}>2$.
6. Find the term that does not contain x in the expansion of $\left(8 x-\frac{1}{2 x}\right)^{8}$.
7. Find the last three terms in the expansion $\left(a^{2 / 3}+a^{1 / 3}\right)^{25}$
8. Show that $\binom{n}{r-1}+\binom{n}{r}=\binom{n+1}{r}$

Math 12 - Precalculus - Solutions to Take Home Problems for Chapter 7 Test

1. $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$

SOLN: For $n=1, \sum_{k=1}^{1} k^{2}=1^{2}=\frac{(1+1)(2+1)}{6}=\frac{6}{6}$.
Assuming the statement is true at n, we have the next statement follows as shown:
$\sum_{k=1}^{n+1} k^{2}=\left(\sum_{k=1}^{n} k^{2}\right)+(n+1)^{2}=\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}=\frac{(n+1)[n(2 n+1)+6(n+1)]}{6}$
$=\frac{(n+1)\left[2 n^{2}+7 n+6\right]}{6}=\frac{(n+1)[(n+2)(2 n+3)]}{6}=\frac{(n+1)[(n+1)+1][2(n+1)+1]}{6}$
2. $\sum_{k=1}^{n}(2 k-1)^{3}=n^{2}\left(2 n^{2}-1\right)$

SOLN: For $n=1, \sum_{k=1}^{1}(2 k-1)^{3}=(2-1)^{3}=1^{2}\left(2(1)^{2}-1\right)=1$
Assuming the statement is true at n, we have the next statement follows as shown:

$$
\begin{aligned}
\sum_{k=1}^{n+1}(2 k-1)^{3} & =\left(\sum_{k=1}^{n}(2 k-1)^{3}\right)+[2(n+1)-1]^{3}=n^{2}\left(2 n^{2}-1\right)+(2 n+1)^{3} \\
& =2 n^{4}-n^{2}+8 n^{3}+12 n^{2}+6 n+1=\left(n^{2}+2 n+1\right)\left(2 n^{2}+4 n+1\right)=(n+1)^{2}\left[2(n+1)^{2}-1\right]
\end{aligned}
$$

3. $\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{n}{n+1}$

SOLN: $\sum_{k=1}^{1} \frac{1}{k(k+1)}=\frac{1}{1(1+1)}=\frac{1}{1+1}$, so the the statement is true for $n=1$.
Assume $\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{n}{n+1}$, then

$$
\begin{aligned}
\sum_{k=1}^{n+1} \frac{1}{k(k+1)} & =\left(\sum_{k=1}^{n} \frac{1}{k(k+1)}\right)+\frac{1}{(n+1)(n+2)}=\frac{n}{n+1}+\frac{1}{(n+1)(n+2)} \\
& =\frac{n(n+2)+1}{(n+1)(n+2)}=\frac{(n+1)^{2}}{(n+1)(n+2)}=\frac{n+1}{n+2}
\end{aligned}
$$

4. Show that the sequence of successive ratios F_{n+1} / F_{n} appears to converge to a number r satisfying the equation $r^{2}=r+1$. (The number r was known as the golden ratio to the ancient Greeks.)
SOLN: By definition of the Fibonacci numbers, $F_{n+1}=F_{n}+F_{n-1}$. Dividing through by F_{n} yields $\frac{F_{n+1}}{F_{n}}=1+\frac{1}{F_{n} / F_{n-1}}$. The key observation here is that if F_{n+1} / F_{n} converges
to r as n gets large, then so does F_{n} / F_{n-1} converge to r and so for large n the equation becomes $r \approx 1+1 / r$ or $r^{2} \approx r+1$ (in the limit, the approximation is exact.)
5. Let r satisfy $r^{2}=r+1$. Show that the sequence $s_{n}=A r^{n}$, where A is a constant, satisfies the Fibonacci equation $s_{\mathrm{n}}=s_{\mathrm{n}-1}+s_{\mathrm{n}-2}$ for $\mathrm{n}>2$.
SOLN: We need to show that $s_{n}=s_{n-1}+s_{n-2} \Leftrightarrow A r^{n}=A r^{n-1}+A r^{n-2}$ which follows immediately from dividing through by $A r^{n-2}$.
6. Find the term that does not contain x in the expansion of $\left(8 x-\frac{1}{2 x}\right)^{8}$.

SOLN: $\binom{8}{4}(8 x)^{4}\left(-\frac{1}{2 x}\right)^{4}=\frac{8(7)(6)(5)}{4(3)(2)}\left(\frac{8}{2}\right)^{4}=70(256)=17920$
7. Find the last three terms in the expansion $\left(a^{2 / 3}+a^{1 / 3}\right)^{25}$

SOLN:
$\left(a^{2 / 3}+a^{1 / 3}\right)^{25}=a^{50 / 3}+\cdots+\binom{25}{2} a^{4 / 3} a^{23 / 3}+\binom{25}{1} a^{2 / 3} a^{24 / 3}+a^{25 / 3}=a^{50 / 3}+\cdots+300 a^{9}+25 a^{26 / 3}+a^{25 / 3}$
8. Show that $\binom{n}{r-1}+\binom{n}{r}=\binom{n+1}{r}$

SOLN: $\binom{n}{r-1}+\binom{n}{r}=\frac{n!}{(n-r+1)!(r-1)!}+\frac{n!}{r!(n-r)!}=\frac{n!r+n!(n-r+1)}{r!(n-r+1)!}$

$$
=\frac{n!(r+(n-r+1))}{r!(n-r+1)!}=\frac{n!(n+1)}{r!(n-r+1)!}=\binom{n+1}{r}
$$

