Math 12 - Precalculus - Chapt 4 Test - fall '04 NAME
Show all responses on separate paper. Show all work for credit.

1. Rewrite the equation $2+10^{2 x-5}=10$ in equivalent logarithmic form, then solve for x. Finally, use a calculator to approximate x to the nearest thousandth.
2. Rewrite the equation $3-2 \log _{8}(x-4)=1$ in equivalent exponential form, then solve for x.

Do not use a calculator
3. Solve the equation for x. Approximate to 4 digits, if appropriate.
a. $10^{x}=6.022 \times 10^{23}$
b. $1.037^{x / 12}=3$
4. Use properties of logarithms to solve the equation. Approximate to 4 digits if appropriate.
a. $\quad \log _{2}(x)+\log _{2}(44-3 x)=7$
b. $\log \left(\frac{10}{9 x^{2}}\right)+\log (1)=0.5$
5. Given $f(x)=1+1.322^{x}$.
a. Find a formula for the inverse function, $y=f^{-1}(x)$.
b. Find the intercept and asymptote of $f(x)$.
c. Find the intercept and asymptote of $f^{-1}(x)$.
d. Complete the table

x	-2	0	2	4	6	8	10
$f(x)$							

6. Suppose the Gorkon population on planet Xorda in April of 1999 was 1380, and it is estimated that the population will increase by 2% every 400 years.
a. Assuming a natural growth model for the Gorkons, when will its population have grown to 2000 ?
b. By what percentage will the population grow in 1800 years?
7. If $\$ 300$ is invested at 3.65% annual interest rate compounded daily, how long will it take to reach a value of $\$ 500$?
8. Actinium has a half life of about 7.04×10^{8} years. How long will it take a 1 gram sample to decay to one milligram (one thousandth of a gram).
9. Find an exponential function (of the form $f(x)=a \cdot b^{x}$) which passes through the points $(2,5)$ and $(5,8)$. What is the value of $f(8)$?
10. Rewrite the equation $2+10^{2 x-5}=10$ in equivalent logarithmic form, then solve for x.

Finally, use a calculator to approximate x to the nearest thousandth.
SOLN: $2+10^{2 x-5}=10 \Leftrightarrow 10^{2 x-5}=8 \Leftrightarrow 2 x-5=\log (8) \Leftrightarrow x=\frac{5+\log (8)}{2} \approx 2.952$
2. Rewrite the equation $3-2 \log _{8}(x-4)=1$ in equivalent exponential form, then solve for x.

SOLN: $3-2 \log _{8}(x-4)=1 \Leftrightarrow \log _{8}(x-4)=1 \Leftrightarrow x-4=8 \Leftrightarrow x=12$
3. Solve the equation for x. Approximate to 4 digits, if appropriate.
a. $10^{x}=6.022 \times 10^{23}$

SOLN: $x=\log (6.022)+23 \approx 23.78$
b. $1.037^{x / 12}=3$

SOLN:

$$
1.037^{x / 12}=3 \Leftrightarrow \ln \left(1.037^{x / 12}\right)=\ln 3 \Leftrightarrow \frac{x}{12} \ln (1.037)=\ln 3 \Leftrightarrow x=\frac{12 \ln 3}{\ln (1.037)} \approx 362.9
$$

4. Use properties of logarithms to solve the equation. Approximate to 4 digits if appropriate.
a. $\quad \log _{2}(x)+\log _{2}(44-3 x)=7$

$$
\log _{2}(x)+\log _{2}(44-3 x)=7 \Rightarrow \log _{2}(x(44-3 x))=7 \Leftrightarrow-3 x^{2}+44 x=128
$$

SOLN:

$$
\Leftrightarrow 3 x^{2}-44 x-128=0 \Leftrightarrow(3 x-32)(x-4)=0 \Leftrightarrow x=\frac{32}{3} \text { or } x=4
$$

b. $\log \left(\frac{10}{9 x^{2}}\right)+\log (1)=0.5$

$$
\log \left(\frac{10}{9 x^{2}}\right)+\log (1)=0.5 \Leftrightarrow \log 10-\log 9 x^{2}+0=0.5 \Leftrightarrow \log 9 x^{2}=\frac{1}{2} \Leftrightarrow 9 x^{2}=\sqrt{10}
$$

SOLN:

$$
\Leftrightarrow x=\frac{ \pm 10^{1 / 4}}{3}
$$

5. Given $f(x)=1+1.322^{x}$.
a. Find a formula for the inverse function, $y=f^{-1}(x)$.

SOLN:
$y=1+1.322^{x} \Leftrightarrow 1.322^{x}=y-1 \Leftrightarrow \log \left(1.322^{x}\right)=\log (y-1) \Leftrightarrow x \log 1.322=\log (y-1)$
$x=\frac{\log (y-1)}{\log (1.322)} \approx 8.2487 \log (y-1) \Leftrightarrow f^{-1}(x)=8.2487 \log (x-1)$
b. Find the intercept and asymptote of $f(x)$.

SOLN: The graph of $y=f(x)$ rises from a horizontal asymptote $y=1$ through the y-intercept at $(0,2)$.
c. Find the intercept and asymptote of $f^{-1}(x)$.

SOLN: The graph of $y=f^{-1}(x)$ rises along a vertical asymptote $x=1$ through the x-intercept at $(2,0)$.
d. ANS: The complete the table is

x	-2	0	2	4	6	8	10
$f(x)$	1.57	2	2.75	4.05	6.34	10.3	17.3

6. Suppose Tara invests $\$ 200$ in a bank account paying 3% interest, compounded monthly.
a. Write a formula which describes the amount of money in the account t years later.

SOLN: $A(t)=200\left(1+\frac{0.03}{12}\right)^{12 t}=200(1.0025)^{12 t} \approx 200(1.030416)^{t}$
b. How long would it take her money to double?

SOLN: $(1.0025)^{12 t}=2 \Leftrightarrow 12 t \ln (1.0025)=\ln 2 \Leftrightarrow t=\frac{\ln (2)}{12 \ln (1.0025)} \approx 23.1338$ years.
c. How long would it take her money to double if instead of being compounded monthly it was compounded continuously?
SOLN: $e^{0.03 t}=2 \Leftrightarrow t=\frac{\ln 2}{0.03} \approx 23.1049$
7. Strontium 90 is a radioactive isotope with a half-life of 27.8 years.
a. If 12 grams of strontium 90 are present at $t=0$, write a formula which gives the amount (in grams) of strontium 90 which remains at time t (in years.)
SOLN: $A(t)=12(0.5)^{t / 27.8} \approx 12(0.975375)^{t}$
b. How long will it take the strontium 90 to decay to 2 grams?

SOLN: $A(t)=2 \Leftrightarrow 12(0.5)^{t / 27.8}=2 \Rightarrow(0.975375)^{t} \approx \frac{1}{6} \Rightarrow t \approx \frac{-\ln 6}{\ln 0.975375} \approx 71.86$
8. Find an exponential function of the form $P(t)=P_{0} \bullet e^{r t}$ which passes through the points $(0,5)$ and $(30,10)$.
SOLN: We know that $P_{0}=5$ so $P(30)=5 e^{30 r}=10 \Leftrightarrow r=\frac{\ln 2}{30} \approx 0.0231$ and thus $P(t)=5 e^{0.0231 t}$

