Math 1B - Sections §5.1-§5.6 Test - Fall 2008
Name
Instructions: Write all responses on separate paper. Show all work for credit. Do not use a calculator.

1. The velocity graph of an experimental rocket accelerating from rest to a velocity of about $104 \mathrm{~km} / \mathrm{h}$ over a period of 10 seconds is shown. Approximate (to the nearest hundredth of a km) the distance travelled by the rocket over this time using $n=2$ evenly spaced subintervals and
a. right endpoints as sample points
b. the trapezoidal method
c. the midpoint method

2. Consider the Riemann sums for $\int_{2}^{4} \sin (\pi x) d x$ with n evenly space intervals.
a. Write the length of each subinterval in terms of n.
b. Write the right endpoint of the k th subinterval in terms of n and k.
c. Write the integral as the limit of Riemann sums in terms of n and k. No x.
3. Evaluate the integral by interpreting it in terms of the areas of well known figures such as rectangles, triangles or circles. Draw a diagram for each.
a. $\int_{2}^{3}\left(\frac{x}{2}+1\right) d x$
b. $\int_{0}^{3} \sqrt{9-x^{2}} d x$
c. $\int_{0}^{3} 3-\sqrt{9-x^{2}} d x$
4. Use the Fundamental Theorem of Calculus to find the derivative of the given function.
a. $g(x)=\int_{1}^{x} \frac{1}{v} d v$
b. $H(z)=\int_{z}^{z^{2}} \sin \left(x^{2}\right) d x \quad$ Hint: Use the property $\int_{a}^{b} f d t=\int_{a}^{c} f d t+\int_{c}^{b} f d t$
5. Can you find a non-zero solution to the equation $\int_{0}^{x} \sin \left(t^{2}\right) d t=x$? Discuss why or why not.
6. Evaluate the definite integral
a. $\int_{0}^{\pi / 8} \sec ^{2}(2 x) d x$
b. $\int_{0}^{1} \sqrt{3-3 x} d x$
c. $\int_{0}^{4} \frac{x}{\sqrt{4 x+9}} d x$
d. $\int_{0}^{\ln 2} t^{2} e^{t} d t$
e. $\int_{0}^{t} \sin (t-s) d s$
f. $\int_{0}^{\pi} e^{x} \cos (4 x) d x$
7. The velocity graph of an experimental rocket accelerating from rest to a velocity of about $104 \mathrm{~km} / \mathrm{h}$ over a period of 10 seconds is shown. Approximate (to the nearest hundredth of a km) the distance travelled by the rocket over this time using $n=2$ evenly spaced subintervals and
a. right endpoints as sample points SOLN: $5 *(98+106) / 3600=204 / 720=$ $17 / 60 \sim 0.28 \mathrm{~km}$
b. the trapezoidal method

SOLN: $\frac{\Delta x}{2}(f(0)+2 f(5)+f(10)) \approx 2.5(0+2 * 98+106) \approx 0.21 \mathrm{~km}$
c. the midpoint method

SOLN: $\Delta x(f(2.5)+f(7.5)) \approx 5(78+102) / 3600=0.25$
2. Consider the Riemann sums for $\int_{2}^{4} \sin (\pi x) d x$ with n evenly space intervals.
a. Write the length of each subinterval in terms of n.

SOLN: $\Delta x=\frac{b-a}{n}=\frac{4-2}{n}=\frac{2}{n}$
b. Write the right endpoint of the k th subinterval in terms of n and k.

SOLN: $x_{k}=a+k \Delta x=2+\frac{2 k}{n}$
c. Write the integral as the limit of Riemann sums in terms of n and k. No x.|

SOLN: $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \sin \left(\pi\left(2+\frac{2 k}{n}\right)\right) \frac{2}{n}=\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{k=1}^{n} \sin \left(\frac{2 k \pi}{n}\right)$
3. Evaluate the integral by interpreting it in terms of the areas of well known figures such as rectangles, triangles or circles. Draw a diagram for each.
a. $\int_{2}^{3}\left(\frac{x}{2}+1\right) d x$ is the area of a trapezoid with base $=1$ and average height $=$ $\frac{2+2.5}{2}=2.25$ so the area is 2.25
b. $\int_{0}^{3} \sqrt{9-x^{2}} d x$ is the area of a quarter circle with radius 3 , this is $\frac{9 \pi}{4}$
c. $\int_{0}^{3} 3-\sqrt{9-x^{2}} d x$ is what's left when the quarter circle's area (above) is subtracted from the area of a 3 by 3 square, or $9-\frac{9 \pi}{4} \approx \frac{36-29.3}{4} \approx 1.7$
4. Use the Fundamental Theorem of Calculus to find the derivative of the given function.
a. $g(x)=\int_{1}^{x} \frac{1}{v} d v \Rightarrow g^{\prime}(x)=\frac{1}{x}$ "That was easy!"

$$
\text { b. } \begin{aligned}
H(z) & =\int_{z}^{z^{2}} \sin \left(x^{2}\right) d x \Rightarrow H^{\prime}(z)=\frac{d}{d z} \int_{z}^{0} \sin \left(x^{2}\right) d x+\int_{0}^{z^{2}} \sin \left(x^{2}\right) d x \\
& =-\frac{d}{d z} \int_{0}^{z} \sin \left(x^{2}\right) d x+2 z \frac{d}{d u} \int_{0}^{u} \sin \left(x^{2}\right) d x \\
& =-\sin \left(z^{2}\right)+2 z \sin \left(z^{4}\right)
\end{aligned}
$$

5. Can you find a non-zero solution to the equation $\int_{0}^{x} \sin \left(t^{2}\right) d t=x$? Discuss why or why not.

SOLN: Note that $x=\int_{0}^{x} 1 d t$ and that $\sin \left(t^{2}\right) \leq 1$ for all t. Thus the right side is accumulating area at a rate of 1 unit per unit x while the left side accumulating area at a rate less than this most of the time, and since it starts out accumulating area at a slower rate, there's no way the areas can be the same.
6. Evaluate the definite integral
a. $\quad \int_{0}^{\pi} \sec ^{2}(2 x) d x$ exists only if $\int_{0}^{\pi / 4} \sec ^{2}(2 x) d x=\lim _{b \rightarrow \pi / 4^{-}} \int_{0}^{b} \sec ^{2}(2 x) d x$ exists, and $\lim _{b \rightarrow \pi / 4^{-}} \int_{0}^{b} \sec ^{2}(2 x) d x=\left.\lim _{b \rightarrow \pi / 4^{-}} \frac{1}{2} \tan (2 x)\right|_{0} ^{b}=\lim _{b \rightarrow \pi / 4^{-}} \frac{1}{2} \tan (2 b)=\infty$ does not exist.
However, $\int_{0}^{\pi / 8} \sec ^{2}(2 x) d x=\left.\frac{1}{2} \tan (2 x)\right|_{0} ^{\pi / 8}=\frac{1}{2}$
b. Substitute $u=3-3 x$ so that $d u=-3 d x$

$$
\int_{0}^{1} \sqrt{3-3 x} d x=\int_{3}^{0} \sqrt{u}\left(-\frac{1}{3} d u\right)=\frac{1}{3} \int_{0}^{3} u^{1 / 2} d u=\left.\frac{2}{9} u^{3 / 2}\right|_{0} ^{3}=\frac{2 \sqrt{3}}{3}
$$

c. Substitute $u=4 x+9 \Rightarrow d u=4 d x$ and $x=\frac{u-9}{4}$ to get

$$
\begin{aligned}
\int_{0}^{4} \frac{x}{\sqrt{4 x+9}} d x & =\int_{9}^{25} \frac{u-9}{4 \sqrt{u}}\left(\frac{d u}{4}\right)=\frac{1}{16} \int_{9}^{25} u^{1 / 2}-9 u^{-1 / 2} d u=\left.\frac{1}{16}\left(\frac{2 u^{3 / 2}}{3}-18 u^{1 / 2}\right)\right|_{9} ^{25} \\
& =\frac{1}{16}\left[\left(\frac{250}{3}-90\right)-(18-54)\right]=\frac{1}{16}\left(36-\frac{20}{3}\right)=\frac{11}{6}
\end{aligned}
$$

d. Two integrations by parts are required here:

$$
\begin{aligned}
& \int_{0}^{\ln 2} t^{2} e^{t} d t \text { with } \begin{array}{cc}
u=t^{2} & d v=e^{t} d t \\
d u=2 t d t & v=e^{t}
\end{array} \\
& =\left.t^{2} e^{t}\right|_{0} ^{\ln 2}-2 \int_{0}^{\ln 2} t e^{t} d t \text { with } \begin{array}{cc}
u=t & d v=e^{t} d t \\
d u=d t & v=e^{t}
\end{array} \\
& =2(\ln 2)^{2}-2\left[\left.t e^{t}\right|_{0} ^{\ln 2}-\int_{0}^{\ln 2} e^{t} d t\right]=2(\ln 2)^{2}-4 \ln 2+2
\end{aligned}
$$

e. Let $u=t-s$ so that $d u=-d s$ and $\int_{0}^{t} \sin (t-s) d s=\int_{t}^{0} \sin u(-d u)=\int_{0}^{t} \sin u d u=1-\cos t$
f. Do parts with $\begin{array}{rl}u & =e^{x} \\ d v & d v=\cos (4 x) d x \\ d u & =e^{x} d x \\ v & =\frac{1}{4} \sin (4 x)\end{array}$ so that
$I=\int_{0}^{\pi} e^{x} \cos (4 x) d x=\left.\frac{e^{x}}{4} \sin (4 x)\right|_{0} ^{\pi}-\frac{1}{4} \int_{0}^{\pi} e^{x} \cos (4 x) d x$ and doing parts again with $\begin{array}{rl}u & =e^{x} \\ d u & d v=-\sin (4 x) d x \\ e^{x} d x & v=\frac{1}{4} \cos (4 x)\end{array}$ yields $I=\left.\frac{e^{x}}{16} \cos (4 x)\right|_{0} ^{\pi}-\frac{1}{16} I \Leftrightarrow I=\frac{e^{\pi}-1}{17}$

