
Math 1B Project 2 Solutions.
Modifying Simpson’s rule. Simpson’s rule is a method to approximate the area under a given curve f(x) in a
subinterval [x0, x2] (composed of two “panels” [x0, x1] and [x1, x2], each of width h), by constructing a quadratic
polynomial p(x) which fits three constraints: p(x0) = f(x0), p(x1) = f(x1), p(x2) = f(x2)

The three constraints determine a unique parabola p(x), and
x2∫
x0

p(x) dx approximates
x2∫
x0

f(x) dx. To improve accuracy,

several parabolas may be placed end-to-end in contiguous subintervals, giving Simpson’s rule with error term:

x2m∫
x0

f(x) dx =
h

3
[f(x0) + 4f(x1) + 2f(x2) + · · ·+ 2f(x2m−2) + 4f(x2m−1) + f(x2m]− (x2m − x0)h4f (4)(µ)

180

for some µ ∈ (x0, x2m). As the number of subintervals increases (and more parabolas are used to approximate f(x)),
the size of h decreases; this decrease in h reduces the error dramatically since the error is proportional to h4.

Here is a modification of Simpson’s rule. The coefficients are altered, two derivative terms are added, and–most
importantly–the error term is improved. The method is analagous to the trapezoidal rule with endpoint correction1.

Suppose we build a polynomial q(x) by imposing the three constraints of Simpson’s rule plus two additional con-
straints:

q(x0) = f(x0), q(x1) = f(x1), q(x2) = f(x2), q
′(x0) = f ′(x0), and q′(x2) = f ′(x2)

Think of the two additional constraints as “clamping” the approximating polynomial q(x) to f(x) at the endpoints
x0 and x2. As we’ll see, these five constraints can be used to define a quartic polynomial which, expeanded about
the midpoint of the subinterval, has the form

q(x) = a4(x− x1)4 + a3(x− x1)3 + a2(x− x1)2 + a1(x− x1) + a0

1. (10 points) Simplify
x2∫

x0

q(x) dx

in terms of h, a0, a2, and a4.
Solution: The odd-powered terms will integrate to zero since they have odd symmetry about the midpoint, x1,
of the interval of integration. That leaves

x2∫
x0

q(x) dx =

x2∫
x0

a4(x− x1)4 + a2(x− x1)2 + a0 dx =
a4(x− x1)5

5
+
a2(x− x1)3

3
+ a0x

∣∣∣x2

x0

=
2h5

5
a4 +

2h3

3
a2 + 2ha0

2. (10 points) Use the five constraints to set up a system of five equations in the five unknowns, a0, a1, a2, a3, a4,
then solve these to find formulas for a0, a2, and a4 in terms of the parameters y0 = f(x0), y1 = f(x1), y2 = f(x2)
and y′0 = f ′(x0), y

′
2 = f ′(x2)

Solution: Here is the system:
q(x0) = a4h

4 − a3h3 + a2h
2 − a1h+ a0 = y0

q(x1) = a0 = y1
q(x2) = a4h

4 + a3h
3 + a2h

2 + a1h+ a0 = y2
q′(x0) = −4a4h

3 + 3a3h
2 − 2a2h+ a1 = y′0

q′(x2) = 4a4h
3 + 3a3h

2 + 2a2h+ a1 = y′2
Substituting a0 = y1 and adding the first and third and the fourth and fifth we get a 2× 2 system in a2 and a4:
2a4h

4 + 2a2h
2 = y2 − 2y1 + y0

8a4h
3 + 4a2h = y′2 − y′0

1Samuel D. Conte and Carl de Boor, Elementary Numerical Analysis, McGraw-Hill, New York, 1980.
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Multiplying the second equation by −h
4

and adding it to the first equation eliminates a4 so we can solve for a2:

a2 =
1

h2

(
y2 − 2y1 + y0 −

h

4
(y′2 − y′0)

)
=
y2 − 2y1 + y0

h2
− y′2 − y′0

4h
and a4 = −y2 − 2y1 + y0

2h4
+
y′2 − y′0

4h3

3. (10 points) Substitute these values for the coefficients of q(x) to show that

x2∫
x0

q(x) dx =
h

15

(
7f(x0) + 16f(x1) + 7f(x2) + h[f ′(x0)− f ′(x2)]

)
Solution:

x2∫
x0

q(x) dx =
2h5

5

(
−y2 − 2y1 + y0

2h4
+
y′2 − y′0

4h3

)
+

2h3

3

(
y2 − 2y1 + y0

h2
− y′2 − y′0

4h

)
+ 2hy1

−3h(y2 − 2y1 + y0)

15
+

10h(y2 − 2y1 + y0)

15
+

3h2(y′2 − y′0)
30

− 5h2(y′2 − y′0)
30

+
30hy1

15

=
h

15

(
7y2 + 16y1 + 7y0 − h[y′2 − y′0]

)
=

h

15

(
7f(x0) + 16f(x1) + 7f(x2) + h[f ′(x0)− f ′(x2)]

)
4. (10 points) Simplify

x2m∫
x0

q(x) dx =

x2∫
x0

q(x) dx+

x4∫
x2

q(x) dx+ · · ·+
x2m∫

x2m−2

q(x) dx

in terms of the y-values, yi = f(xi), i ∈ {0, 1, . . . 2m} and the slopes f ′(x0), f
′(x2), . . . f

′(x2m). How does this
compare with Simpson’s rule?
Solution: Except for the very first and last points in the partition, the endpoint values double up for the y-values
at even indeces while the y′ values telescope:

x2m∫
x0

q(x) dx =
h

15

2n−2∑
i=0

(7yi + 16yi+1 + 7yi+2) +
h2

15

2n−2∑
i=0

(y′i+2 − y′i)

=
h

15
(7y0 + 16y1 + 7y2 + 7y2 + 16y3 + 7y4 + · · ·+ 7y2n−2 + 16y2n−1 + 7y2n)

+
h2

15
(y′2 − y′0 + y′4 − y′2 + · · ·+ y′2n−2 − y′2n−4 + y′2n − y′2n−2)

=
h

15

(
7y0 + 16y1 + 14y2 + 16y3 + 14y4 + · · ·+ 14y2m−2 + 16y2m−1 + 7y2m + h[f ′(x0)− f ′(x2m)]

)
This is similar to Simpson’s rule except (1) the common multiplier is

h

15
instead of

h

6
, the coefficients are

{7, 16, 14, 16, 14, 15, . . . , 14, 16, 7} instead of {1, 2, 4, 2, 4, . . . , 4, 2, 4, 1} and there is extra term involving the deriva-

tives:
h2

15
[f ′(x0)− f ′(x2m]

5. (30 points) For each of the following integrals, complete a table of errors like this:
n Clamped Rule error Simpson’s Rule error

2

4

8

16
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(a)
4∫
2

dx

x

n Clamped Rule error Simpson’s Rule error

2 2.34× 10−6 −1.07× 10−4

4 4.41× 10−8 −7.35× 10−6

8 7.30× 10−10 −4.72× 10−7

16 1.16× 10−11 −2.97× 10−8

(b)
5∫
1

ln(x) dx

n Clamped Rule error Simpson’s Rule error

2 −6.57× 10−4 5.71× 10−3

4 −2.24× 1‘0−5 5.34× 10−4

8 −5.10× 10−7 3.98× 10−5

16 −9.16× 10−9 2.63× 10−6

(c)
1∫
0

e−x
2
dx

n Clamped Rule error Simpson’s Rule error

2 1.17× 10−7 −3.12× 10−5

4 1.33× 10−9 −1.99× 10−6

8 1.91× 10−11 −1.25× 10−7

16 2.92× 10−13 −7.79× 10−9

There are a variety of ways to arrive at these error estimates. C++ code works well, if you can write it (Take
CS7A in the fall!): Alternatively, write a little program for the TI85, like so:

Then we can run the program with y1=1/x on Graph page to verify the errors we listed above:

For the error in the estimation

x2m∫
x0

f(x) dx ≈
x2m∫
x0

q(x) dx

we can prove the following theorem:
Theorem. If f (6)(x) is continuous on [x0, x2m], then for some v ∈ (x0, x2m):

x2m∫
x0

f(x) dx =
h

15

(
7y0 + 16y1 + 14y2 + 16y3 + 14y4 + · · ·+ 14y2m−2 + 16y2m−1 + 7y2m + h[f ′(x0)− f ′(x2m)]

)

+
(x2m − x0)h6f (6)(v)

9450

To determine the error, start by constructing the fifth degree polynomial

t(x) = q(x) + k(x− x0)2(x− x1)(x− x2)2

which has the same integral as q(x) on [x0, x2] but allows for sharper estimates.
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6. Explain why
x2∫
x0

k(x− x0)2(x− x1)(x− x2)2 dx = 0

Solution: The integrand has odd symmetry around the point (x1, 0) and the interval of integration is centered
on x = x1 so that the signed area in x0 ≤ x ≤ x1 is the opposite of that in x1 ≤ x ≤ x2. To be sure, the

substitution u = x− x1 yields
h∫
−h

k(u+ h)2u(u− h)2 du = k
h∫
−h

u(u2 − h2)2 du = 0

7. (10 points) Show that t(x) satisfies all the constraints of the clamped q(x) and that if we take k = (f ′(x1) −
q′(x1))/h

4 then t′(x1) = f ′(x1).
Solution:

t(x0) = q(x0), t(x1) = q(x1), t(x2) = q(x2)

t′(x) = q′(x) + 2k(x− x0)(x− x1)(x− x2)2 + k(x− x0)2(x− x2)2 + 2k(x− x0)2(x− x1)(x− x2)

so that
t′(x0) = q′(x0) = f ′(x0), and t′(x2) = q′(x2) = f ′(x2)

Now

t′(x1) = q′(x1) + k(x1 − x0)2(x1 − x2)2 = q′(x1) + kh4 = f ′(x1)⇔ k =
f ′(x1)− q′(x1)

h4

does the trick, as desired. We leave the completion of the proof for the above theorem for another time.

8. (10 points) It is known that

2

∞∫
0

cosx

1 + x2
dx =

∞∫
−∞

cosx

1 + x2
dx =

π

e
≈ 1.1557273497909217.

Investigate how the Clamped rule and Simpson’s rule compare for approximating this integral as

2

10,000∫
0

cosx

1 + x2
dx = 2

10∫
0

cosx

1 + x2
dx+ 2

100∫
10

cosx

1 + x2
dx+ 2

1000∫
100

cosx

1 + x2
dx+ 2

10,000∫
1000

cosx

1 + x2
dx

for n = 2, 4, 8, 16.
Solution:

Using Mathematica, I find that 2
10∫
0

cosx

1 + x2
dx ≈ 0.57423915985756283000385890837367349472114644869057

interval n integral Clamped Rule error Simpson’s Rule error

0 ≤ x ≤ 10 32 0.5742391598575628 6.1275× 10−10 3.3488× 10−8

10 ≤ x ≤ 100 512 0.003572191617775706 −2.7726× 10−11 −4.8639× 10−8

100 ≤ x ≤ 1000 4096 0.00005314916913240810 −5.0963× 10−13 −6.0145× 10−10

1000 ≤ x ≤ 10000 8192 −8.288032494498435× 10−7 1.8243× 10−10 7.8569× 10−9

10000 ≤ x ≤ 100000 65536 3.057816242998889 ∗ 10−9 −2.82× 10−12 −7.75× 10−11


