
Chapter 11 Notes
1. Here’s some work we did in class using series to approximate π, as a recap.

Recall the derivation of arctanx =
∞∑

n=0

(−1)nx2n+1

2n+ 1
on[−1, 1] is obtained by differentiating

y = arctanx, expanding as a geometric series and then integrating.
To be sure, the polynomials diverge outside this interval, as, using the Mathematica command
Plot[{ArcTan[x], x, x−x∧3/3, x−x∧3/3+x∧5/5, x−x∧3/3+x∧5/5−x∧7/7}, {x,−2, 2}] to produce the diagram illustrates:

Note that arctanx is the one that appears to be following the asymptotes, y = ±π
2

and that the curve that veers off most

severely is also the curve that best fits the function on [−1, 1] – that’s the 7th degree polynomial.

A beginner might then use the series
π

4
= arctan(1) =

∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+ · · ·, but that converges slowly.

We can improve the rate of convergence. Use the double angle formula starting with α = arctan
1

5
so that

tan(2α) =
2 · tanα

1− tan2 α
=

2/5

1− 1/25
=

5

12
and then applying the double angle formula again: tan(4α) =

2 · tan(2α)

1− tan2(2α)
=

5/6

1− 25/144
=

120

119

Since
π

4
≈ 4α, compute tan

(
4α− π

4

)
=

tan 4α− tanπ/4

tan 4α+ tanπ/4
=

tan 4α− 1

1 + tan 4α
=

1

239
so that 4α − π/4 = arctan(1/239) and

π = 16 · arctan(1/5)− 4 · arctan(1/239) = 16
∞∑

n=0

(−1)n(1/5)2n+1

2n+ 1
+ 4

∞∑
n=0

(−1)n(1/239)2n+1

2n+ 1
=

= 16

(
1

5
− 1

375
+

1

15625
+ · · ·

)
− 4

(
1

219
− 1

31510377
+ · · ·

)
= 3.2− 0.0426 + 0.001024 + · · · − 0.01826484 + 1.27× 10−7

= 3.1583573− 0.01826484 + 1.27× 10−7

≈ 3.1400 – With four terms we get three digits of accuracy...or so it seems.
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2. 11.3 # 39: Estimate S =
∞∑

n=1
(2n+ 1)−6 correct to five decimal places.

Solution: Since f(x) =
1

(2x+ 1)6
is a positive, decreasing, integrable function on [1,∞), we can use the approximation

fro the the error in approximation: RN = S − SN <
∞∫
N

dx

(2x+ 1)6
= limb→∞

−1

10(2x+ 1)5

∣∣∣b
N

=
1

10(2N + 1)5
. Choose N

so that this is smaller than the max rounding error for 10−5, that is, so that
1

10(2N + 1)5
< 5 × 10−6 ⇔ 1

(2N + 1)5
<

5× 10−5 ⇔ (2N + 1)5 > 2× 104 or 2N + 1 > (20000)1/5 ≈ 7.25⇔ N > 3. So we’ll need four terms. To be sure, here’s a
table of partial sums:
N 1 2 3 4 5
SN 0.00137174 0.00143574 0.00144424 0.00144612 0.00144669

where you can see that 0.001446 would round up to it’s final approximation, 0.00145 on the 4th iteration, but not before.

3. 11.4 # 27 Determine whether the series
∞∑

n=1

(
1 +

1

n

)2

e−n converges or diverges.

Solution: Comparison test? Compare with what? The first factor is approaching 1 as n grows, but the second factor is
decreasing geometrically. Try comparison with a geometric series.

Since 1 +
1

n
< 3 for n ≥ 1

∞∑
n=1

(
1 +

1

n

)2

e−n <
∞∑

n=0
3e−n =

3

1− 1/e
=

3e

e− 1
.

The series has all positive terms which are less than those of a convergent series, thus the series is convergent.

4. 11.4 # 31 Determine whether the series
∞∑

n=1
sin

(
1

n

)
converges or diverges.

Solution: This is a classic limit comparison test problem. All terms are positive, and since

limn→∞
sin(1/n)

1/n
= limx→0

sinx

x
= 1. The harmonic series diverges, so, by limit comparison,

∞∑
n=1

sin

(
1

n

)
also diverges.

5. 11.4 # 33 Use the sum of the first 10 terms to approximate the sum of the series
∞∑

n=1

1√
n4 + 1

. Estimate the error.

Solution: This requires a electro-mechanical computer of some sort. Mathematica will take this command:
Sum[1/Sqrt[b∧4+1],{n,10}] and spit back 1√

2
+ 1√

17
+ 1√

82
+ 1√

257
+ 1√

626
+ 1√

1297
+ 1√

2402
+ 1√

4097
+ 1√

6562
+ 1√

10001

which is approximated by N[%] for 1.24856. We can estimate the error through a mixture of comparison and integral test.
∞∑

n=1

1√
n4 + 1

<
∞∑

n=1

1

n2
and the error is then less than

∞∫
10

dx

x2
=

1

10
. In fact, summing the first 10000 terms gives 1.34362,

so 1/10 is a pretty good estimate of the error.
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