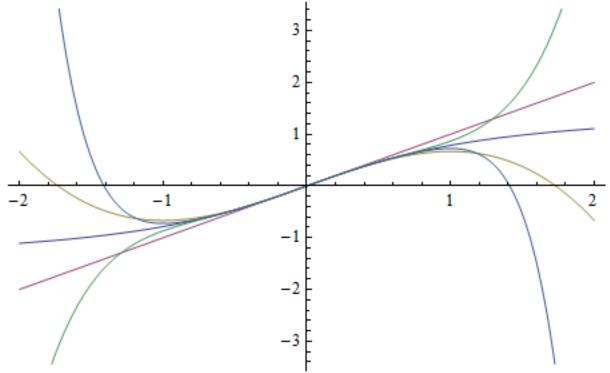
Chapter 11 Notes

- 1. Here's some work we did in class using series to approximate π , as a recap. Recall the derivation of $\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$ on [-1,1] is obtained by differentiating
 - $y = \arctan x$, expanding as a geometric series and then integrating.
 - To be sure, the polynomials diverge outside this interval, as, using the Mathematica command
 - $Plot[{ArcTan}[x], x, x x^3/3, x x^3/3 + x^5/5, x x^3/3 + x^5/5 x^7/7], \{x, -2, 2\}]$ to produce the diagram illustrates:



Note that $\arctan x$ is the one that appears to be following the asymptotes, $y=\pm\frac{\pi}{2}$ and that the curve that veers off most severely is also the curve that best fits the function on [-1,1] - that's the 7th degree polynomial.

A beginner might then use the series $\frac{\pi}{4} = \arctan(1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$, but that converges slowly.

We can improve the rate of convergence. Use the double angle formula starting with
$$\alpha = \arctan \frac{1}{5}$$
 so that $\tan(2\alpha) = \frac{2 \cdot \tan \alpha}{1 - \tan^2 \alpha} = \frac{2/5}{1 - 1/25} = \frac{5}{12}$ and then applying the double angle formula again: $\tan(4\alpha) = \frac{2 \cdot \tan(2\alpha)}{1 - \tan^2(2\alpha)} = \frac{5/6}{1 - 25/144} = \frac{120}{119}$

Since
$$\frac{\pi}{4} \approx 4\alpha$$
, compute $\tan\left(4\alpha - \frac{\pi}{4}\right) = \frac{\tan 4\alpha - \tan \pi/4}{\tan 4\alpha + \tan \pi/4} = \frac{\tan 4\alpha - 1}{1 + \tan 4\alpha} = \frac{1}{239}$ so that $4\alpha - \pi/4 = \arctan(1/239)$ and

Since
$$\frac{\pi}{4} \approx 4\alpha$$
, compute $\tan\left(4\alpha - \frac{\pi}{4}\right) = \frac{\tan 4\alpha - \tan \pi/4}{\tan 4\alpha + \tan \pi/4} = \frac{\tan 4\alpha - 1}{1 + \tan 4\alpha} = \frac{1}{239}$ so that $4\alpha - \pi/4 = \arctan(1/239)$ and $\pi = 16 \cdot \arctan(1/5) - 4 \cdot \arctan(1/239) = 16 \sum_{n=0}^{\infty} \frac{(-1)^n (1/5)^{2n+1}}{2n+1} + 4 \sum_{n=0}^{\infty} \frac{(-1)^n (1/239)^{2n+1}}{2n+1} = \frac{16\left(\frac{1}{5} - \frac{1}{375} + \frac{1}{15625} + \cdots\right) - 4\left(\frac{1}{219} - \frac{1}{31510377} + \cdots\right)}{3.2 - 0.042\overline{6} + 0.001024 + \cdots - 0.\overline{01826484} + 1.27 \times 10^{-7}}$

 $=3.158357\overline{3}-0.\overline{01826484}+1.27\times10^{-7}$

 ≈ 3.1400 – With four terms we get three digits of accuracy...or so it seems.

2. 11.3 # 39: Estimate $S = \sum_{n=1}^{\infty} (2n+1)^{-6}$ correct to five decimal places. Solution: Since $f(x) = \frac{1}{(2x+1)^6}$ is a positive, decreasing, integrable function on $[1, \infty)$, we can use the approximation

fro the the error in approximation: $R_N = S - S_N < \int_N^\infty \frac{dx}{(2x+1)^6} = \lim_{b \to \infty} \frac{-1}{10(2x+1)^5} \Big|_N^b = \frac{1}{10(2N+1)^5}$. Choose N

so that this is smaller than the max rounding error for 10^{-5} , that is, so that $\frac{1}{10(2N+1)^5} < 5 \times 10^{-6} \Leftrightarrow \frac{1}{(2N+1)^5} < 5 \times 10^{-6} \Leftrightarrow \frac{1}{(2N+1)^5} < 5 \times 10^{-5} \Leftrightarrow (2N+1)^5 > 2 \times 10^4 \text{ or } 2N+1 > (20000)^{1/5} \approx 7.25 \Leftrightarrow N > 3.$ So we'll need four terms. To be sure, here's a

table of partial balls.					
N	1	2	3	4	5
S_N	0.00137174	0.00143574	0.00144424	0.00144612	0.00144669

where you can see that 0.001446 would round up to it's final approximation, 0.00145 on the 4th iteration, but not before.

3. 11.4 # 27 Determine whether the series $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^2 e^{-n}$ converges or diverges.

Solution: Comparison test? Compare with what? The first factor is approaching 1 as n grows, but the second factor is decreasing geometrically. Try comparison with a geometric series.

Since
$$1 + \frac{1}{n} < 3$$
 for $n \ge 1$ $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^2 e^{-n} < \sum_{n=0}^{\infty} 3e^{-n} = \frac{3}{1 - 1/e} = \frac{3e}{e - 1}$.
The series has all positive terms which are less than those of a convergent series, thus the series is convergent.

4. 11.4 # 31 Determine whether the series $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$ converges or diverges. **Solution:** This is a classic limit comparison test problem. All terms are positive, and since

 $\lim_{n\to\infty}\frac{\sin(1/n)}{1/n}=\lim_{x\to 0}\frac{\sin x}{x}=1$. The harmonic series diverges, so, by limit comparison, $\sum_{n=1}^{\infty}\sin\left(\frac{1}{n}\right)$ also diverges.

5. 11.4 # 33 Use the sum of the first 10 terms to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^4+1}}$. Estimate the error. **Solution:** This requires a electro-mechanical computer of some sort. Mathematica will take this command: Sum[1/Sqrt[b^4+1], {n,10}] and spit back $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{17}} + \frac{1}{\sqrt{82}} + \frac{1}{\sqrt{257}} + \frac{1}{\sqrt{626}} + \frac{1}{\sqrt{1297}} + \frac{1}{\sqrt{2402}} + \frac{1}{\sqrt{4097}} + \frac{1}{\sqrt{6562}} + \frac{1}{\sqrt{10001}}$ which is approximated by N[%] for 1.24856. We can estimate the error through a mixture of comparison and integral test. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^4+1}} < \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ and the error is then less than } \int_{10}^{\infty} \frac{dx}{x^2} = \frac{1}{10}. \text{ In fact, summing the first 10000 terms gives 1.34362,}$

so 1/10 is a pretty good estimate of the error.