Math 1B-Calculus II - Fair Game for Chapters 8 and 10 Problems

1. Find the length of the curve $y=\frac{1}{9}\left(x^{2}+6\right)^{3 / 2}, 0 \leq x \leq 1$.
2. Find the length of the curve $y=\int_{0}^{x} \sqrt{\cos ^{2} t-1} d t, 0 \leq x \leq \pi$.
3. Find the surface area generated by rotating about the y-axis the curve $x=\sin (y)$ for $0 \leq y \leq \pi$.
4. Find the surface area of surface generated by rotating the curve $y=x^{-3}$ about the x-axis for $x \geq 1$.
5. A gate in an irrigation canal is constructed in the form of a semicircle with diameter 5 meters at the top. If the canal is filled to a depth of 3 meters, find the hydrostatic force on one side of the gate.
6. Find the centroid of the region bounded by $y=\sin (x)$ and $y=2 \sin (x), 0 \leq x \leq \pi$.
7. Find the moments and center of mass of the system of objects that have masses 4,7 and 11 at the points $(-2,3),(1,1)$ and $(3,-2)$, respectively.
8. Lengths of human pregnancies are normally distributed with mean 268 days and standard deviation 15 days. What percentage of pregnancies last between 250 days and 280 days? Hint: use the normal probability density function: $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}$
9. Let $f(x)=k x\left(1-x^{2}\right)$ if $0 \leq x \leq 1$ and $f(x)=0$ if $x<0$ or $x>1$.
a. For what value of k is $f(x)$ a probability density function?
b. For that value of k, find $P(X \geq 0)$
c. Find the mean.
10.
11. Find the area in the $x y$-plane enclosed by the curve described by each pair of parametric equations. In each case, include a table of (t, x, y) values, as needed, to analyze the graph:
a. $\quad x=1+3 \cos (\pi t)$ and $y=3-2 \sin (\pi t)$.

t	x	y

b. $\quad x=\sin (2 t)$ and $y=\cos (t)$

t	x	y

12. Find the area in the $x y$-plane enclosed by the x-axis and the curve described by the parametric equations $x=1+e^{t}$ and $y=3 t-t^{2}$.
13. Consider the parametric equations describing a hyperbola: $\begin{aligned} & x=1+2 \sec t \\ & y=3+4 \tan t\end{aligned}$
a. Write the equation for the hyperbola in standard form by specifying
values for a, b, h, and k in the formula $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b}=1$
Hint: Recall the identity $\sec ^{2} t-\tan ^{2} t=1$
b. Find a value of t so that the tangent line at $(x(t), y(t))$ has slope $=4$.
c. Find the value of $\left|\frac{d^{2} y}{d x^{2}}\right|$ where $x=5$.

$$
x=t^{2}+2
$$

14. Find the area of the loop formed by $y=t\left(t^{2}-9\right)$

Hint: The loop closes where the curve intersects itself: where we can find two different parameter values, $t_{1} \neq t_{2}$, such that $x\left(t_{1}\right)=x\left(t_{2}\right)$ and $y\left(t_{1}\right)=y\left(t_{2}\right)$.
15. Find the area that lies inside the curve $r=2+\cos \vartheta$ and outside $r=\cos (2 \vartheta)$.
16. The area of the surface generated by rotating the polar curve $r=f(\theta)$ for $a \leq \theta \leq b$ about the polar axis (the x-axis) is $S=\int_{a}^{b} 2 \pi r \sin \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$. Use this formula to find the surface area generated by rotating the lemniscate $r^{2}=\cos 2 \vartheta$ about the polar axis.

