Math 1B—Calculus II – Fair Game for Chapters 8 and 10 Problems

- 1. Find the length of the curve $y = \frac{1}{9} (x^2 + 6)^{3/2}$, $0 \le x \le 1$.
- 2. Find the length of the curve $y = \int_0^x \sqrt{\cos^2 t 1} dt$, $0 \le x \le \pi$.
- 3. Find the surface area generated by rotating about the *y*-axis the curve $x = \sin(y)$ for $0 \le y \le \pi$.
- 4. Find the surface area of surface generated by rotating the curve $y = x^{-3}$ about the x-axis for $x \ge 1$.
- 5. A gate in an irrigation canal is constructed in the form of a semicircle with diameter 5 meters at the top. If the canal is filled to a depth of 3 meters, find the hydrostatic force on one side of the gate.
- 6. Find the centroid of the region bounded by $y = \sin(x)$ and $y = 2\sin(x)$, $0 \le x \le \pi$.
- 7. Find the moments and center of mass of the system of objects that have masses 4, 7 and 11 at the points (-2,3), (1,1) and (3,-2), respectively.
- 8. Lengths of human pregnancies are normally distributed with mean 268 days and standard deviation 15 days. What percentage of pregnancies last between 250 days and 280 days? Hint: use the normal probability density function: $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}$

- 9. Let $f(x) = kx(1-x^2)$ if $0 \le x \le 1$ and f(x) = 0 if x < 0 or x > 1.
 - a. For what value of k is f(x) a probability density function?
 - b. For that value of k, find $P(X \ge 0)$
 - c. Find the mean.
- 10
- 11. Find the area in the xy-plane enclosed by the curve described by each pair of parametric equations. In each case, include a table of (t, x, y) values, as needed, to analyze the graph:

a.
$$x = 1 + 3\cos(\pi t)$$
 and $y = 3 - 2\sin(\pi t)$.

t	x	у

b. $x = \sin(2t)$ and $y = \cos(t)$

t	x	У

- 12. Find the area in the *xy*-plane enclosed by the *x*-axis and the curve described by the parametric equations $x = 1 + e^t$ and $y = 3t - t^2$.
- 13. Consider the parametric equations describing a hyperbola: $\begin{cases} x = 1 + 2 \sec t \\ y = 3 + 4 \tan t \end{cases}$

- a. Write the equation for the hyperbola in standard form by specifyin values for *a*, *b*, *h*, and *k* in the formula $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b} = 1$ *Hint*: Recall the identity $\sec^2 t - \tan^2 t = 1$
- b. Find a value of t so that the tangent line at (x(t), y(t)) has slope = 4.
- c. Find the value of $\left| \frac{d^2 y}{dx^2} \right|$ where x = 5.
- 14. Find the area of the loop formed by $x = t^{2} + 2$ $y = t(t^{2} 9)$

Hint: The loop closes where the curve intersects itself: where we can find two different parameter values, $t_1 \neq t_2$, such that $x(t_1) = x(t_2)$ and $y(t_1) = y(t_2)$.

- 15. Find the area that lies inside the curve $r = 2 + \cos \vartheta$ and outside $r = \cos(2\vartheta)$.
- 16. The area of the surface generated by rotating the polar curve $r = f(\theta)$ for $a \le \theta \le b$ about the polar

axis (the x-axis) is $S = \int_{-\infty}^{b} 2\pi r \sin \theta \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$. Use this formula to find the surface area generated by rotating the lemniscate $r^2 = \cos 2\vartheta$ about the polar axis.