## Math 1B – Calculus – Fair Game for Chapter 7 Test – Fall '11

1. Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

a. 
$$\int_{1}^{\infty} \frac{1}{\left(2x-1\right)^{2}} dx$$

b. 
$$\int_0^\infty x e^{-x^2} dx$$

$$\int_{-\infty}^{\infty} \frac{x^4}{64 + x^6} dx$$

$$\int_{-\infty}^{\infty} \frac{x^4}{64 + x^2} dx$$

$$e. \qquad \int_0^\infty \frac{x^4}{4+x^2} dx$$

$$f. \qquad \int_0^\infty \frac{x^3}{4+x^2} dx$$

$$g. \qquad \int_0^\infty \frac{1}{x^2 \sqrt{x^2 + 1}} dx$$

$$h. \qquad \int_1^\infty \frac{1}{x^2 \sqrt{x^2 - 1}} \, dx$$

a. 
$$\int_{1}^{\infty} \frac{1}{(2x-1)^{2}} dx$$
b. 
$$\int_{0}^{\infty} xe^{-x^{2}} dx$$
c. 
$$\int_{-\infty}^{\infty} \frac{x^{4}}{64+x^{6}} dx$$
d. 
$$\int_{-\infty}^{\infty} \frac{x^{4}}{64+x^{2}} dx$$
e. 
$$\int_{0}^{\infty} \frac{x^{4}}{4+x^{2}} dx$$
f. 
$$\int_{0}^{\infty} \frac{x^{3}}{4+x^{2}} dx$$
g. 
$$\int_{0}^{\infty} \frac{1}{x^{2}\sqrt{x^{2}+1}} dx$$
h. 
$$\int_{1}^{\infty} \frac{1}{x^{2}\sqrt{x^{2}-1}} dx$$
i. 
$$\int_{1}^{\infty} \frac{1}{(x-1)^{2}\sqrt{x}} dx$$

2. Use the comparison theorem to show that the integral is either convergent or divergent.

a. 
$$\int_{100}^{\infty} \frac{1 - e^{-x}}{x^2} dx$$

$$\int_{100}^{\infty} \frac{1 - e^{-x}}{x^2} dx$$
 b. 
$$\int_{100}^{\infty} \frac{1 - e^{-x}}{x} dx$$

$$c. \qquad \int_3^\infty \frac{\sin^2 x}{\sqrt{x^3} - 3} dx$$

- 3. Consider the integral  $\int_0^\infty x^n e^{-x} dx$ .
  - a. Evaluate the integral for n = 0,1, 2, and 3.
  - b. Make a guess about the value of the integral in terms of n.
  - c. Prove your guess is right by using mathematical induction.
- 4. If f(t) is continuous for  $t \ge 0$ , the Laplace transform of f is the function F defined by

$$F(s) = \int_0^\infty f(t)e^{-st}dt$$

and the domain of F is the set consisting of all numbers s for which the integral converges. Find the Laplace transforms of the following functions:

a. 
$$f(t) = 2$$

b. 
$$f(t) = t^2$$

- 5. Determine the value of a so that  $\int_0^a \frac{t}{t^2 + 1} dt = e^{1000}$
- 6. If the integrals  $\int_{-\infty}^{\infty} f(t)dt$  and  $\int_{-\infty}^{a} f(t)dt$  are convergent then it's possible to define  $\int_{-\infty}^{\infty} f(t)dt = \int_{-\infty}^{a} f(t)dt + \int_{a}^{\infty} f(t)dt$ . With this in mind, is possible to define  $\int_{-\infty}^{\infty} \frac{t}{t^2 + 1} dt$ ?
- 7. Find the value of the constant C for which the integral  $\int_0^\infty \frac{t}{t^2+1} \frac{C}{3t+1} dt$  and evaluate the integral.
- 8. Show that if a > -1 and b > a + 1, then the integral  $\int_0^\infty \frac{y^a}{y^b + 1} dy$  is convergent.