Write all responses on separate paper. Show work for credit. No "graphing" calculator.

1. Consider the function whose graph is shown at right.
a. Use the graph to approximate $\int_{0}^{3} f(x) d x \approx R_{3}$, the Riemann sum formed with 3 subintervals of equal length and using right endpoints as sample points.
b. Use the graph to approximate $\int_{0}^{3} f(x) d x \approx L_{3}$, the Riemann sum formed with 3 subintervals of equal length and using left endpoints as sample points.
c. Use the graph to approximate $\int_{0}^{3} f(x) d x \approx M_{3}$, the Riemann sum formed with 3 subintervals of equal length and using midpoints as sample points (try to approximate to the nearest tenth.)
d. Put these in order from smallest to largest:
$R_{3}, L_{3},\left(R_{3}+L_{3}\right) / 2$ and M_{3}.

2. Determine a region whose area is determined by the given limit. Do not evaluate the limit.
a. $\lim _{n \rightarrow \infty} \frac{9}{n} \sum_{i=1}^{n} \sin \left(\frac{9 \pi i}{n}\right)$
b. $\quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(4+\frac{2 i}{n}\right)^{3}$
3. Use the definition of the integral to evaluate the integral $\int_{0}^{4}\left(x+3 x^{3}\right) d x$. Note: you can use the Evaluation Theorem to check your work, but you must use the definition for credit.
4. Evaluate the integral by interpreting it in terms of familiar area formulae.
a. $\int_{0}^{1}\left(1+\sqrt{1-x^{2}}\right) d x$
b. $\quad \int_{-2}^{1}(2-|x|) d x$
5. Use Part 1 or Part 2 of the Fundamental theorem of Calculus to evaluate the expression:
a. $\frac{d}{d x} \int_{0}^{\pi} \cos \left(t^{2}\right) d t$
b. $\quad \int_{0}^{\pi} \frac{d}{d t} \sin \left(t^{2}\right) d t$
c. $\frac{d}{d x} \int_{x^{2}}^{x^{3}}\left(t^{2}\right) d t$
6. Use substitution to simplify the following definite integrals. For each, explicitly state what the components of your substitution are (on separate paper):
a. $\int_{0}^{\pi / 4} \tan ^{3} \theta \sec ^{2} \theta d \theta$
$u=\tan \theta \quad d u=$ \qquad
b. $\int_{0}^{1} x^{2}\left(x^{3}+1\right)^{8} d x$
$u=$ \qquad ? $d u=$ \qquad

Math 1B - Chapter 5 test Solutions - Fall '11

1. Consider the function whose graph is shown at right.
a. Use the graph to approximate $\int_{0}^{3} f(x) d x \approx R_{3}$

SOLN: $R_{3}=1 *(6+10+16)=32$
b. Use the graph to approximate $\int_{0}^{3} f(x) d x \approx L_{3}$

SOLN: $L_{3}=1 *(4+6+10)=20$
c. Use the graph to approximate $\int_{0}^{3} f(x) d x \approx M_{3}$
(try to approximate to the nearest tenth.)
SOLN: $M_{3}=1 *(4.8+7.8+12.8)=25.4$
d. Put these in order from smallest to largest:
$R_{3}, L_{3},\left(R_{3}+L_{3}\right) / 2$ and M_{3}.
SOLN: $L_{3}<M_{3}<\left(R_{3}+L_{3}\right) / 2<R_{3}$,

2. Determine a region whose area is determined by the given limit. Do not evaluate the limit.
a. $\lim _{n \rightarrow \infty} \frac{9}{n} \sum_{i=1}^{n} \sin \left(\frac{9 \pi i}{n}\right)$ SOLN: From $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$ we conjecture that $\Delta x=\frac{b-a}{n}=\frac{9}{n}$. This fist if $a=0, b=9$ and the integrand function is $\sin (\pi x)$ and so $x_{i}=a+i \Delta x=\frac{9 i}{n}$. Thus the area represented by limit is $\int_{0}^{9} \sin (\pi x) d x$

b. $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(4+\frac{2 i}{n}\right)^{3} \quad$ SOLN: Here it is reasonable to suppose that the integrand function is $y=x^{3}$ and so the sample point is $x_{i}=a+i \Delta x=4+\frac{2 i}{n}$ which naturally suggests that $a=4$ and $\Delta x=\frac{2}{n}$. This suggests we revise our integrand function to $y=x^{3} / 2$ and so the area is $\int_{4}^{6} \frac{x^{3}}{2} d x$

3. Use the definition of the integral to evaluate the integral $\int_{0}^{4}\left(x+3 x^{3}\right) d x$. Note: you can use the Evaluation Theorem to check your work, but you must use the definition for credit. SOLN:

$$
\begin{aligned}
\int_{0}^{4}\left(x+3 x^{3}\right) d x & =\lim _{n \rightarrow \infty} \frac{4}{n} \sum_{i=1}^{n} \frac{4 i}{n}+3\left(\frac{4 i}{n}\right)^{3}=\lim _{n \rightarrow \infty} \frac{16}{n^{2}} \sum_{i=1}^{n} i+\frac{3 \cdot 4^{4}}{n^{4}} \sum_{i=1}^{n} i^{3}=\lim _{n \rightarrow \infty} \frac{16\left(n^{2}+n\right)}{2 n^{2}}+\frac{3 \cdot 4^{4}\left(n^{2}+n\right)^{2}}{4 n^{4}} \\
& =\lim _{n \rightarrow \infty} 8+\frac{8}{n}+3 \cdot 4^{3}+\frac{2 \cdot 3 \cdot 4^{3}}{n}+\frac{3 \cdot 4^{3}}{n^{2}}=8+192=200
\end{aligned}
$$

As a check, $\int_{0}^{4}\left(x+3 x^{3}\right) d x=\frac{x^{2}}{2}+\left.\frac{3 x^{4}}{4}\right|_{0} ^{4}=8+192=200$
4. Evaluate the integral by interpreting it in terms of familiar area formulae.
a. $\int_{0}^{1}\left(1+\sqrt{1-x^{2}}\right) d x$

$$
\operatorname{SOLN} \int_{0}^{1}\left(1+\sqrt{1-x^{2}}\right) d x=1+\frac{\pi}{4}
$$

b. $\int_{-2}^{1}(2-|x|) d x$

SOLN: $\int_{-2}^{1}(2-|x|) d x=4-\frac{1}{2}=\frac{7}{2}$
5. Use Part 1 or Part 2 of the Fundamental theorem of Calculus to evaluate the expression:
a. $\frac{d}{d x} \int_{0}^{\pi} \cos \left(t^{2}\right) d t$

SOLN: $\frac{d}{d x} \int_{0}^{\pi} \cos \left(t^{2}\right) d t=0$, since the rate of change of a constant is zero.
b. $\int_{0}^{\pi} \frac{d}{d t} \sin \left(t^{2}\right) d t$

SOLN: $\int_{0}^{\pi} \frac{d}{d t} \sin \left(t^{2}\right) d t=\left.\sin \left(t^{2}\right)\right|_{0} ^{\pi}=\sin \left(\pi^{2}\right)$
c. $\frac{d}{d x} \int_{x^{2}}^{x^{3}}\left(t^{2}\right) d t$

$$
\text { SOLN: } \begin{aligned}
\frac{d}{d x} \int_{x^{2}}^{x^{3}}\left(t^{2}\right) d t & =\frac{d}{d x} \int_{x^{2}}^{0}\left(t^{2}\right) d t+\int_{0}^{x^{3}}\left(t^{2}\right) d t=-\frac{d u}{d x} \frac{d}{d u} \int_{0}^{u}\left(t^{2}\right) d t+\frac{d v}{d x} \frac{d}{d v} \int_{0}^{v}\left(t^{2}\right) d t \\
& =-2 x\left(x^{2}\right)^{2}+3 x^{2}\left(x^{3}\right)^{2}=3 x^{8}-2 x^{5}
\end{aligned}
$$

6. Use substitution to simplify the following definite integrals. For each, explicitly state what the components of your substitution are (on separate paper):
a. $\int_{0}^{\pi / 4} \tan ^{3} \theta \sec ^{2} \theta d \theta \quad u=\tan \theta \quad d u=\sec ^{2} \theta \mathrm{~d} \theta$

$$
\int_{0}^{\pi / 4} \tan ^{3} \theta \sec ^{2} \theta d \theta=\int_{0}^{1} u^{3} d u=\left.\frac{u^{4}}{4}\right|_{0} ^{1}=\frac{1}{4}
$$

b. $\int_{0}^{1} x^{2}\left(x^{3}+1\right)^{8} d x \quad u=x^{3}+1 \quad d u=3 x^{2} \mathrm{~d} x$

$$
\int_{0}^{1} x^{2}\left(x^{3}+1\right)^{8} d x=\frac{1}{3} \int_{1}^{2} u^{8} d u=\left.\frac{u^{9}}{27}\right|_{1} ^{2}=\frac{512}{27}-\frac{1}{27}=\frac{511}{27}
$$

