
Math 1B  - Chapter 6 Problems in Anticipation of the Chapter 6 Test 
 
1. Find the volume generated when the region bounded by ( )20 2y x x≤ ≤ −  

a. …is revolved about the x-axis. 
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b. …is revolved about the y-axis. 

( )( )2 2 2

0 0
2 2 2V rhdx x x x dxπ π= = −∫ ∫  

2 2 3 4

0
2 4 4x x x dxπ= − + =∫   

2
3 4 5

0

4 12
3 5

x x xπ ⎛ ⎞= − + =⎜ ⎟
⎝ ⎠

 32 32 160 240 96 322 16 2 6.70
3 5 15 15

ππ π − +⎛ ⎞ ⎛ ⎞= − + = = ≈⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
2. Set up an integral for the volume generated when the region bounded by ( )0 2y x x≤ ≤ −  
a. …is revolved about the x-axis, using the shell 

method.  Note: you may need to solve for x. 
ANS:  Solving for x we get 

( )2(2 ) 2y x x x x= − = − −             

( ) ( )2 21 1 1 1x x y= − − + ⇔ − = −  

whence 1 1x y= ± −  so that 
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3. …is revolved about the y-axis, using the washer method. 
Note: you may need to solve for x. 
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11. The area of the plane bounded between ( ) 2 4 5f x x x= − +  and ( ) 2 3g x x= −  is revolved around the x-
axis. Find the volume of revolution.   
a. Sketch a graph of the region bounded and the volume of revolution. 
b. Set up an integral for the volume of revolution using the washer method. 
c. Set up an integral for the volume of revolution using the shell method. 
d. Evaluate one of these integrals.  Use a calculator if necessary. 

 
12. Consider the regionR  in the first quadrant bounded by the  y-axis  

and the curves y = 2cos x and y = sin x.  
Set up (but do not evaluate) integrals to compute the following: 
a. The area of R   by integrating over x. 
b. The area of R   by integrating over y. 
c. The volume of the region generated by rotating R  about the y-axis. 
d. The volume of the region generated by rotating R  about the x-axis. 
e. The surface area of the volume generated by revolving R  about the line x = arctan(2). 

 
13. Suppose a pyramid with a square base of area 225 square meters and a height of 160 meters is filled with 

water.   Find the work required to pump all the water out of the top of a pyramid. 
SOLN:  Whoops: I guess the true dimension of the great pyramid of Egypt is more like the length of an 
edge of the square base is 225 meters.  But we solve the problems we are given, so here it goes: 
The horizontal cross-sections are squares whose side lengths varies linearly from 15 to 0 as the height y 

ranges from 0 to 160. Thus the cross sectional area at height y is ( )
21515

160
yA y ⎛ ⎞= −⎜ ⎟
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 - or – if you think 

of x as the distance from the top, then the cross-sectional area at x is ( )
2 215 9

160 1024
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.  This is 

maybe easier to work with.  Then an element of work is ( ) ( )
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.  Integrating gives the total amount of work: 
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∫ J 

14. Suppose an elliptical thin metal shell with height = 4 meters and 
horizontal circular cross-sections of radius = 2 meters and is half 
submerged in water as shown at right.   
What is the weight of the shell?  Explain your reasoning. 

 

15. Consider the function ( ) xf x x e−= ⋅  on the interval [0,ln2]. Find the average value of f on the interval. 

SOLN: ( )ln 2 ln 2ln 2

AVG 00 0

1 1 1 ln 2 1 1 ln 21 0.2213
ln 2 ln 2 ln 2 2 2 2ln 2

x x xf x e dx xe e dx− − − ⎛ ⎞ −⎛ ⎞= ⋅ = − + = − − − = ≈⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫ ∫  

a. Why does this function satisfy the condition of the Mean Value Theorem for Integrals? 
SOLN:  ( ) xf x x e−= ⋅  is continuous on the interval [0,ln2]. 

b. What equation would you solve to find the number whose existence is guaranteed by the Mean 
Value Theorem for Integrals for this function on that interval? Can you solve it exactly? 

SOLN:  1 ln 2
2ln 2

cc e− −
⋅ =  which doesn’t a have a nice closed form solution, so it hard to solve it 

“exactly.”  We could give the solution a name, like, say, “jabberwacky” and then the solution would 



be exactly jabberwacky, which is approximately 0.298272, as the screenshots below show. 

          
 

16. Consider the regionR  in the first quadrant bounded by the  y-axis  
and the curves y = 2cos x and y = sin x.  
Set up (but do not evaluate) integrals to compute the following: 
a. The area of R   by integrating over x. 

SOLN:  ( )
1tan 2

0
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−

−∫  

b. The area of R   by integrating over y. 

SOLN:  
2/ 5 21 1

0 2/ 5
sin cos

2
yydy dy− −+∫ ∫  

c. The volume of the region generated by rotating R  about the y-axis. 

SOLN: Using shells:  ( )
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0
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−

−∫  

With washers: ( )
2
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d. The volume of the region generated by rotating R  about the x-axis. 

SOLN: Using washers:  ( ) ( )
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0
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−

−∫  

With shells: ( )2/ 5 21 1
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