
Math 1B Chapter 11 Test Solutions 12/9/14

1. (14 points) Find a value of r so that
∞∑
n=0

rn = 42

Solution:
∞∑
n=0

rn =
1

1− r
= 42⇔ r =

41

42
.

2. (18 points) Consider the series S =
∞∑
n=0

(−1)n2n

(n)!
.

(a) Explain why limn→∞
2n

(n)!
= 0

SOLN: Approach #1: Let
2n

n!
so that y1/n =

2

(n!)1/n
= n

√
2

n
· 2

n− 1
· · · 2

1
.

It is known that the geometric mean of n positive numbers is always less than the arithmetic mean of the

numbers, so y1/n ≤
2
n + 2

n−1 + · · ·+ 2
1

n
=

2

n

n∑
i=1

1

i
<

2

n

(
1 +

n∫
1

dx

x

)
=

2

n
(1+ln(n))→ 0 as n→∞ If y1/n → 0

then y → 0.

Approach #2 (simpler) The series is absolutely convergent by direct comparison:
∑
n=0

2n

n!
< 3+

∞∑
n=2

4

(n− 1)n
<

3+
∞∑
n=2

4

(n− 1)2
= 3+

∞∑
n=1

4

n2
= 3+

2π2

3
converges so the nth term test (a necessary condition for convergence)

must be satisfied, which means limn→∞
2n

(n)!
= 0. Note that we went a little further than needed here, since

our comparable series is a p-series with p = 2 > 1, we didn’t have to say what it converges to, just that it
converges, but this is the famous Basel problem! - the thrill of usage is irresistable.

Approach #3 (simplest) We can write
2n

n!
=

2

1

2

2

2

3

2

4

2

5
· · · 2

n
. The product of the first four terms is

2

3
. From

the fifth term on, each new factor is less than 1
2 . For n > 4,

2n

n!
<

2

3

(
1

2

)n−4
→ 0 as n→∞.

(b) Explain why
∞∑
n=0

(−1)n2n

n!
is convergent and use the alternating series error bound to find a value of N so

that
N∑
n=0

(−1)n2n

(n)!
approximates

∞∑
n=0

(−1)n2n

(n)!
to within 0.1

SOLN: The series converges absolutely, so the alternating series is within
∣∣∣an+1

∣∣∣ of nth partial sum. We seek

the smallest n such that
2n

n!
<

1

20
Tabulating, we find

n 0 1 2 3 4 5 6
2n

n!
1 2 2

4

3

2

3

4

15

4

45

Substituting x = −2 in the Maclaurin series for ex we have e−2 =
∑∞

n=0
(−1)n2n

n! ≈ 0.135335283236612691893999495

N 0 1 2 3 4 5 6
N∑
n=0

(−1)n2n

n!
1 −1 1

−1

3

1

3

1

15
= 0.06

7

45
= 0.15

The table shows we’re within 0.1 by N = 5.

3. (16 points) Show that the series
∞∑

n=100

1

x1.1 + 1
is convergent by using a comparison test and the integral test. Be

sure to state why the conditions for using the integral test are met.

SOLN:
∞∑

n=100

1

x1.1 + 1
≤

∞∑
n=100

1

x1.1
. Since the terms of this sequence positive and decreasing, we can test for

convergence with the integral test:
∞∫
1

dx

x1.1
= limb→∞−10x−0.1

∣∣∣b
1

= 10. Since the integral converges, the series

converges.

http://math.cmu.edu/~bwsulliv/basel-problem.pdf
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4. (24 points) Find a Maclaurin series for each of the following:

(a) cos2(x) = 1
2 + 1

2 cos(2x) = 1
2 + 1

2

∞∑
n=0

(−1)n(2x)2n

(2n)!
= 1

2 + 1
2

∞∑
n=0

(−1)n4nx2n

(2n)!
.

We can use Mathematica to compute and plot the Taylor polynomials as follows. Start by defining the
function we want to approximate:

f[x_] := (1+Cos[2*x])/2

Then, while Mathematica has a built-in command to compute Taylor polynomials called Series, the result
is in a special format. To get Taylor polynomials in a more usable form, define a new function, P, which
takes the order of the polynomial n, the name of the function, f, the point about which we are forming the
Taylor polynomial, a, and the variable name x:

P[n_, f_, a_, x_] := Normal[Series[f[t], {t, a, n}]] /. t -> x

Now this command:

P[12, f, 0, x]

will produce 2x12

467775 −
2x10

14175 + x8

315 −
2x6

45 + x4

3 − x
2 + 1 and then

Plot[{P[2, f, 0, x], P[4, f, 0, x], P[6, f, 0, x], P[8, f, 0, x],

f[x]}, {x, -4, 4}, PlotRange -> {-0.6, 1.5}]

will give us

You can also take the more round-about approach and compute coefficients from the formula, keeping in
mind that this is an even function and so all the odd coefficients will be 0:
c0 = f(0) = 1 Now f ′(x) = −2 cos(x) sin(x) = − sin(2x) allows us to easily compute, for n > 0 even,

cn =
f (n)(0)

n!
=

(−1)n22n−1

(2n)!
⇒ cos2(x) = 1 +

∞∑
n=1

(−1)n22n−1

(2n)!
x2n

(b) e−x
2

=
∞∑
n=0

(−x2)n

n!
=
∞∑
n=0

(−1)nx2n

n!
. We can again use Mathematica to look at the plots of the polynomial

approximation, just change the definition of f .

(c)
1

1 + (2x)3
=

1

1− (−2x)3
=
∞∑
n=0

(−8x3)n =
∞∑
n=0

(−1)n8nx3n
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The radius of convergence can be found by using the ratio test: limn→∞

∣∣∣an+1

an

∣∣∣ = limn→∞ 8
∣∣∣x∣∣∣3 < 1 ⇔

−1

2
< x <

1

2
and the radius is

1

2
. The plot of the polynomials generated by

Plot[{P[3, f, 0, x], P[6, f, 0, x], P[9, f, 0, x], P[12, f, 0, x],

f[x]}, {x, -0.6, 0.6}, PlotRange -> {-1, 3}]

looks like this:

5. (12 points) Estimate the error in each approximation.

(a)
∞∑
n=1

(−1)n

n
≈

10∑
n=1

(−1)n

n
. SOLN: Since this is an alternating series with terms of diminishing magnitude, the

error in approximation is less than the value of the first neglected term:
1

11
≈ 0.09. This alternating harmonic

series which converges to − ln 2 ≈ −0.69314718055994530941723212145818. Tabulating some partial sums,
n 6 7 8 9 10 11

Sn −0.616 −0.75952380 −0.634523809 −0.745634920 −0.645634920 −0.736544011

Error 0.07648 0.06638 0.05862 0.05249 0.04751 0.04340

we see

that, while the error at the 10th term is less than half of a tenth, the rounding error locks in the correct
digit only after the 10th term.

(b)
∞∑
n=1

1

n2 + 2n
≈

10∑
n=1

1

n2 + 2n
. SOLN: Since the terms in this series are positive and decreasing we can apply

the integral test remainder formulas to the error Rn =
∣∣∣S − Sn∣∣∣:

∞∫
11

1

x2 + 2x
dx < Rn <

∞∫
10

1

x2 + 2x
dx

The integral can be done either by trig substitution or partial fractions. Since these are both methods worth

reviewing, let’s start with the harder way first:
∞∫
a

1

(x+ 1)2 − 1
dx suggests the trig substituion

x + 1 = sec θ, dx = sec θ tan θ dθ giving the integral
π/2∫
α

sec θ tan θ

tan2 θ
dθ where α = arctan

1

a+ 1
. The integral

simplifies to
∫ π

2
α csc(x) dx = − ln

∣∣∣ csc θ + cot θ
∣∣∣π/2
α

= ln
∣∣∣ cscα + cotα

∣∣∣ = ln

(
12√
143

+
1√
143

)
= ln

(
13√
143

)
if a = 11 and ln

(
6√
30

)
if a = 10.

With partial fractions,
∞∫
a

1

x2 + 2x
dx =

1

2

∞∫
a

1

x
− 1

x+ 2
dx =

1

2
(ln(x)− ln(x+ 2))

∣∣∣∞
a

=
1

2
ln

x

x+ 2

∣∣∣∞
a

= ln

√
a+ 2

a
. If a = 11 this is ln

√
13

11
and a = 10 gives ln

√
6

5
. It’s easy to check that these are equivalent

to the trig-based values. Thus ln

√
13

11
≈ 0.08353 < Rn < 0.09116 ≈ ln

√
6

5
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6. (16 points) Find the first three terms of the Maclaurin series for
√

9− x and use these to approximate
√

8. How
accurate is your approximation?
√

9− x = 3
√

1− x/9 = 3
∞∑
n=0

(
1/2
n

)(−x
9

)n
≈ 3(1− x

18
− 1

648
x2), x = 1 for

√
8 ≈ 3(1−0.05−0.00154) ≈ 2.8287037

7. Use series to approximate

1∫
0

e−x
2
dx to the nearest hundredth.

SOLN:

1∫
0

e−x
2
dx =

1∫
0

∞∑
n=0

(−1)nx2n

n!
dx =

∞∑
n=0

1∫
0

(−1)nx2n

n!
dx =

∞∑
n=0

(−1)nx2n+1

n!(2n+ 1)

∣∣∣1
0

=

∞∑
n=0

(−1)n

n!(2n+ 1)

= 1− 1

3
+

1

10
− 1

42
+

1

216
− 1

1320
+ · · · . Since the series is alternating with the terms decreasing in magnitude,

the error is less than the first neglected term. The true value of the series is

√
π

2
erf(1) ≈ 0.746824132812427

n 2 3 4 5

Sn 0.76 0.7428571 0.747487 0.746729

Rn 0.0198 −0.0040 0.00066 −0.000095


