
Math 1B Chapters 8 and 10 Test Solutions
Note: A variety of CAS are used here, including Geogebra, Mathematica and Sage, which uses Macysma

1. A thin sheet of metal is shaped like the region in the first quadrant between y = sinx and y =
x

2
.

(a) Graph the region.

0.5

1

0
π

2

(b) Find the area of the region.

To determine the point of intersection we solve sin(x) =
x

2
. Since this equation doesn’t have a closed-

form solution, we need to find an approximation we can use. Newton’s method comes to mind. The
equation of the tangent line at the point (xn, f(xn)) is given by the equation

y − f(xn) = f ′(xn)(x− xn), (1)

where f ′(xn) is the first derivative of f evaluated at xn.1 To find the x-intercept of the tangent line,
substitute y = 0 and solve for x.

0− f(xn) = f ′(xn)(x− xn)

x− xn = − f(xn)

f ′(xn)

x = xn −
f(xn)

f ′(xn)

Thus, the next term in the sequence of intercepts that are converging to a root of f is

xn+1 = xn −
f(xn)

f ′(xn)
. (2)

This defines Newton’s Method for finding a root of a given function.
In this case we get

xn+1 = xn −
sin(xn)− xn/2
cos(xn)− 1/2

. (3)

n 0 1 2 3 4 5

xn 1.6 1.98 1.899 1.89550 1.89549426706 1.89549426703398094
This illustrates the usual accurate digit doubling behavior of Newton’s method, so at the end we have
18 correct digits. Let α = 1.89549426703398094 ...or the exact convergent, which is unknown. Then
the area is

A =

α∫
0

sin(x)− x

2
dx = − cos(x)− x2

4

∣∣∣α
0

= 1− cos(α)− α2/4 ≈ 0.420797895052946624

(c) Find the x-coordinate of the center of mass of the region.

x =
1

A

α∫
0

x sin(x)− x2

2
dx =

u = x dv = sin(x)dx

du = dx v = − cos(x)
=

1

A

(
−x cos(x) + sin(x)− x3

6

) ∣∣∣α
0

=
1

A

(
−α cos(α) + sin(α)− α3

6

)
≈ 0.991923709756319716

(d) Find the y-coordinate of the center of mass of the region.

=
1

2A

α∫
0

(
sin2 x− x2/4

)
dx =

1

2A

(
α

2
− sin(2α)

4
− α3

12

)
≈ 0.63141586040866049

1Calculus students will recall that the first derivative evaluated at xn provides the slope of the tangent line to the graph of f at
the point (xn, f(xn)).

http://maxima.sourceforge.net/
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2. An art student was given a circular metal disk 2 ft in diameter and told to drill a hole in it so that when
the disk is cut in half and the piece with the hole is placed atop a spike stuck in the hole, it will balance.
Not knowing about integrals, the artist drilled a hole at a point half-way between the center and the edge.

(a) Where should the student have drilled the hole?
SOLN: Suppose the semidisk is oriented in the xy–
plane as shown at right. By symmetry, x = 0.
There is a choice of integrals for the moment about

the x–axis: Mx =
1∫
0

2y
√

1− y2 dy

= −2

3
(1− y2)3/2

∣∣∣1
0

=
16

3
⇒ y =

2/3

π/2
≈ 0.4244

Alternatively, y =
1

2A

1∫
−1

(1− x2) dx =
4

3π

(b) Now that she has made the mistake, she decides that rather than drill a second hole, she will cut the
piece with the hole in it in such a way that it will balance on the spike at the point of the hole. Explain
clearly how the disk should be cut so that our artist friend can understand.
SOLN: The simplest thing would be to slice along a cord parallel to the diameter cut already made. We

want to choose y = a so that y = 1
2 ⇔

1

A

1∫
a

2y
√

1− y2 dy = − 2

3A
(1 − y2)3/2

∣∣∣1
a

=
2

3A

(
1− a2

)3/2
=

1

2

where A =
1∫
a

2
√

1− y2 dy. The area integral can be done by trig substitution y = sin θ, yielding

A =

π/2∫
arcsin(a)

2 cos2 θ dθ = θ +
sin 2θ

2

∣∣∣π/2
arcsin(a)

=
π

2
− arcsin(a)− a

√
1− a2

Thus the equation becomes 2
(
1− a2

)3/2
= 3

2

(π
2
− arcsin (a)− a

√
1− a2

)
One way to approximate
the solution to this equa-
tion is to graph the left
side and the right side
and to seek the coor-
dinates of intersection.
That’s what the Geoge-
bra session (at right)
shows. In Mathematica,
the more precise value of
{x → 0.138172703842}
is obtained using the
NSolve command:

NSolve[2 ∗ (1− x2)(3/2) ==
3/2∗(−x∗Sqrt[1−x2]−ArcSin[x]+Pi/2), x,Reals, 12]

(c) What is the area of the piece of the metal disk that balances at the point where the hole

(
0,

1

2

)
was

drilled?

SOLN: The trimmed semicircle will have area ≈
1∫

0.138172703842

2
√

1− y2 dy ≈ 1.29533
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3. In each of the following, find the length of the given arc and use Pappus’ theorem to find the volume of the
solid obtained by rotating the given region, R

(a) Arc: y = sinx from x = 0 to x = π.
R: One arch of the sine curve above the x–axis.

SOLN: Arc length =
π∫
0

√
1 + cos2(x) dx = 2

√
2E
(
1
2

)
≈ 3.8202, Where E is the complete integral of

the second kind.
Since the x–coordinate of the region R is simply, by symmetry x =

π

2
and the area of the region is

π∫
0

sin(x) dx = − cos(x)
∣∣∣π
0

= 2 the volume of revolution is 2π(
π

2
(2) = 2π cubic units.

(b) Arc: y = x2 from x = 0 to x = 1.

SOLN: Arc length =
1∫
0

√
1 + 4x2 dx Substitute x = 1

2 tan θ , dx = 1
2 sec2 θ dθ and the integral becomes

1
2

arctan 2∫
0

sec3 θdθ = 1
4 sec θ tan θ + ln | tan θ + sec θ|

∣∣∣arctan 2

0
= 1

2

√
5 + 1

4 ln |
√

5 + 2|

R: The region between y = x2 and y = sinx in the first quadrant.

SOLN:We can use Geogebra to see the region in
question and approximate the coordinates of the
point of intersection (at right) but it only gives a
two-digit approximation, so I used sage to get a
better estimate:

sage: find_root(x^2==sin(x),.5,1)

0.8767262153950625

Let α = 0.8767262153950625. Then the area isA ≈
α∫
0

sin(x)−x2 dx = 1−cosα−α3

3 ≈ 0.13569750723060278

My ≈
α∫
0

x sin(x)− x3 dx = −x ∗ cos(x) + sin(x)− x4

4

∣∣∣α
0

= 0.0601272920687 Mx ≈ 1
2

α∫
0

sin2(x)− x4 dx ≈

0.0444621345032

Thus x =
0.0601272920687

0.13569750723060278
≈ 0.443097985334

and y =
0.0444621345032

0.13569750723060278
≈ 0.327656236364

Thus the volume of revolution about the x–axis is A · 2πy ≈ 0.279363835937499
and the volume of revolution about the y–axis is A · 2πx ≈ 0.377790925796901

(c) Arc: y =

√
1− x2

9
from x = 0 to x = 3 (The integral is a special case of an elliptic integral).

SOLN: Arc length =
3∫
0

√
1 + x2

9(9−x2) dx We can use Sage to aid our analysis:

sage: var(’x’);

sage: #Define a 2d curve explicitly y=f(x) and an interval for x.

sage: f=sqrt(1-x^2/9)

sage: #Let’s plot C

sage: xmin=0; xmax=3; ymin=0; ymax=1;

sage: C=plot(f,(x,0,3),color=’orange’,thickness=3)

sage: show(C,aspect_ratio=1)
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From the graph it’s evident the arc length
is more than 3.2 and less than 4.
The commands

df=diff(f,x)

view(df)

Produce − x

9
√
−1

9x
2 + 1

which is not the way I would write it, but equivalent. Using Sage to compute

the arc length, we write

sage: df=diff(f,x)

sage: Lexact=integral(sqrt(1+df^2),(x,0,3))

sage: n(Lexact)

This produces

3∫
0

√
− x2

9(x2 − 9)
+ 1 dx = 3E

(
8

9

)
≈ 3.341223276776997

R: The region in the first quadrant that lies beneath y =

√
1− x2

9
and outside the unit circle.

The area of a quarter ellipse with semiminor axis = 1 and

semimajor axis = 3 is
3π

4
. Subtracting the area of the quarter

unit circle gives the area of the region =
π

2

In the diagram at right, the axes are reversed from the usual
perspective, so with that we’d have f(x) = 3

√
1− x2 and

g(x) =
√

1− x2 so that

My =
1∫
0

x(3
√

1− x2 −
√

1− x2 dx =
1∫
0

2x
√

1− x2 dx =
2

3

⇒ x =
4

3π
≈ 0.424413181578388.

Mx = 1
2

1∫
0

(3
√

1− x2)2 − (
√

1− x2)2 dx = 4
1∫
0

(1− x2) dx =
8

3

Thus y =
8/3

π/2
=

16

3π
≈ 1.69765272631355

The volume of revolution about the x–axis is 2πyA ≈
16.7551608191456
The volume of revolution about the y–axis is 2πxA ≈
4.18879020478639

4. In this problem we will examine the length of the arc of the curve y = xn on the interval [0, 1] for different
values of n.
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(a) Approximate the length of the arc of the curve y = xn on the interval [0, 1] for n = 1, 10, 20, and 100.
SOLN: Let’s try the wonderful Sage for this.

sage: f(x)=x

sage: df=diff(f,x)

sage: Lexact=integral(sqrt(1+df^2),(x,0,1))

sage: N(Lexact)

1.41421356237310

sage: f(x)=x^10

sage: df=diff(f,x)

sage: Lexact=integral(sqrt(1+df^2),(x,0,1))

sage: N(Lexact)

1.7544093764948012

sage: f(x)=x^20

sage: df=diff(f,x)

sage: Lexact=integral(sqrt(1+df^2),(x,0,1))

sage: N(Lexact)

1.8421431628157183

sage: f(x)=x^100

sage: df=diff(f,x)

sage: Lexact=integral(sqrt(1+df^2),(x,0,1))

sage: N(Lexact)

1.9516717538525004

(b) For the case n = 1 explain how you can get the answer very quickly by just looking at the graph.
SOLN: It’s the hypotenuse of an isosceles triangle with legs = 1:

√
2

(c) Discuss any pattern or trend you see in the calculations in Part (a).
The lengths are growing and approaching 2 from below.

(d) Plot the graphs of the four curves in Part 1 and use them to help explain what is happening to the
arc lengths as n gets larger.

(e) Based on all the above, find lim
n→∞

1∫
0

√
1 + (n+ 1)2x2n dx

Intuitively, the limit appears to be approaching 2 from below.
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(f) Repeat Parts (a) through (d) using the curve y =
√

1− xn on the interval [−1, 1].

sage: f(x)=sqrt(1-x^2)

sage: df=diff(f,x)

sage: Lexact=integral(sqrt(1+df^2),(x,-1,1))

sage: N(Lexact)

3.14159265358979

sage: f(x)=sqrt(1-x^10)

sage: df=diff(f,x)

sage: Lexact=integral(sqrt(1+df^2),(x,-1,1))

sage: N(Lexact)

3.5988221155204547

sage: f(x)=sqrt(1-x^20)

sage: df=diff(f,x)

sage: Lexact=integral(sqrt(1+df^2),(x,-1,1))

sage: N(Lexact)

3.737601185558435

sage: f(x)=sqrt(1-x^100)

sage: df=diff(f,x)

sage: Lexact=integral(sqrt(1+df^2),(x,-1,1))

sage: N(Lexact)

3.9161799006525766

Numerical and graphical evidence supports the

conjecture that lim
n→∞

1∫
0

√
1 +

x2(n−1)

4(1− x2n)
dx = 4

5. We will explore what happens to the ratio of arc length to area on [0, 1] as a → ∞ for four curves that
depend on the parameter a. For each of the four functions that follow,
(i) Plot the graph of the function for a = 1.
(ii) Find the area bounded by the function and the x–axis on [0, 1].
(iii) With pencil and paper, write down the integral formulas for the arc length on [0, 1] and the area under
the curve on [0, 1]. Use these to find an integral formula for the limit of the ratio of arc length to area as
a→∞.
(iv) Using your work in Part (iii), find the limit as a→∞ of the ratio of arc length to area on [0, 1]
(v) By looking at the geometry of the graph, can you find a way to predict the limit in Part (iv) without
doing the calculations?

(a) a(x− x2)

SOLN: Area = a
1∫
0

x− x2 dx =
ax2

2
− ax3

3

∣∣∣1
0

=
a

6

Arc length: L =
1∫
0

√
1 + a2(1 + 2x)2 dx Substi-

tute u = a(1 − 2x) for L = 1
2a

a∫
−a

√
1 + u2 du =

1
a

arctan a∫
0

sec3 θ dθ =

√
a2 + 1

2
− 1

2a ln |a +

√
a2 + 1| =

√
a2 + 1

2
− arcsinh(a)

2a

lima→∞

√
a2 + 1

2
− arcsinh(a)

2a
a/6

= 3

(b) a

(
1

2
−
∣∣∣x− 1

2

∣∣∣)
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Area=
a

4

Arc length L =

√
1 + a2

2

lima→∞

√
1 + a2/2

a/4
= 2

(c) a sin(πx)

Area = a
1∫
0

sin(πx) dx =
2a

π

Arc length L =
1∫
0

√
1 + a2π2 cos2(πx) dx.

If a = 1, L = 2
√

1 + π2E

(
π2

1 + π2

)
π ≈ 2.30489

and the ratio is ≈ 3.62051
To find the limit, a table of values may be helpful:

a 1 10 100

ratio 3.62051 3.150080 3.1428
It becomes evident that this is approaching π.

(d) a times a semicircle of radius 1.
From the well-known formula for an ellipse, Area = aπ/2
Arc length for a = 1 is π. For a = 2,

L = 2
1∫
0

√
1 +

4x2

1− x2
dx = 2E(−3) ≈ 4.84422407278316

sage: f(x)=4*sqrt(1-x^2)

sage: df=diff(f,x)

sage: Lexact=2*integral(sqrt(1+df^2),(x,0,1))

sage: n(Lexact)

8.57842170017548
a 1 4 1024 100000 10000000 1000000000

ratio 2 1.4 1.2732 1.27323952 1.2732395328014 1.2732395328015

6. Consider a flat metal plate to be placed vertically under water with its top 2 meters below the surface of
the water. Determine a shape for the plate so that if the plate is divided into any number of horizontal
strips of equal height, the hydrostatic force on each strip is the same.
SOLN: Embarrassing to say how much I struggled with this. When I hit upon the answer is was *really*
obvious in hindsight.
Let f(x) = k/x where k > 0, then (we can ignore the common factors for force density of the fluid since

they’re on both sides of the equation) we have
a+h∫
a
xf(x) dx = kx

∣∣∣a+h
a

= k(a+ h− a) = kh is independent

of a, so that does it. Darn the torpedoes!
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7. Find the centroid of the region enclosed by the ellipse x2 +(x+y+1)2 = 1.
Note that it’s tilted...
SOLN: Rather than rotating axes by θ = 1

2 arctan(2), noting the coordi-
nates of the center and then rotating them back (which proves to be rather
laborious), look at the line through the points where the tangent lines are
horizontal and the line through the points where the tangent lines are ver-
tical - the intersection of these lines will be the center of the ellipse.
Differentiating implicitly with respect to x we get

2x+ 2(x+ y + 1)

(
1 +

dy

dx

)
= 0.

Setting
dy

dx
= 0 yields the relation y = −2x − 1. Similarly, differentiat-

ing with respect to y we get 2x
dx

dy
+ 2(x + y + 1)

(
dx

dy
+ 1

)
= 0. Setting

dx

dy
= 0 yields the second relation y = −x− 1. Solving these two equations

simultaneously gives the center of mass at (x, y) = (0,−1) as is evident in
the graph shown. The graph was done in Sage with

sage: p1=implicit_plot(x^2+(x+y+1)^2==1,(x,-2,2),(y,-2.5,1.5))

sage: p2=plot(-1-2*x,(x,-2,2))

sage: p3=plot(-x-1,(x,-2,2))

sage: show(p1+p2+p3)

8. Find a formula for the area of the surface generated by rotating the polar curve r = f(θ), a ≤ θ ≤ b (where
f ′ is continuous and 0 ≤ a < b ≤ π), about the line θ = π/2. Apply this to r = cos(2θ).

SOLN:A =
∫
dA =

∫
2πRds =

∫
2πx

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ = 2π
∫
r cos θ

√(
d(x cos θ)

dθ

)2

+

(
d(r sin θ)

dθ

)2

dθ =

(after expanding and applying Pythagoras’ theorem twice) = 2π
π/2∫
−π/2

r cos θ

√(
dr

dθ

)2

+ r2 dθ

With r = cos(2θ), this becomes A = 2π
π/2∫
−π/2

cos(2θ) cos θ
√

4 sin2 2θ + cos2 2θ dθ

Since the integrand is an even function,

A = 4π
π/2∫
0

cos(2θ) cos θ
√

4 sin2 2θ + cos2 2θ dθ

Using the product to sum identity and the Pythagorean identity, we get

A = 2π
π/2∫
0

(cos 3θ + cos θ)
√

1 + 3 sin2 2θ dθ ≈

5.327462965643178593830910538561289160469444825704024488003896...
This seems like it’s in the ball park when you look at the figure being
rotated:

9. Find the arclength and area enclosed by the parametric equations for a = 1 and a = 2

x = 2a cos t− a cos(2t)

y = 2a sin t− a sin(2t)

SOLN: Area A =
∫
y dx = 2a2

0∫
π

(2 sin t− sin(2t))(2 sin(2t)− 2 sin t) dt = 8a2
π∫
0

(2 sin t− sin(2t))2 dt

= 4a2
π∫
0

2 sin2 t− 3 sin t sin 2t+ sin2 2t dt = 4a2
π∫
0

1− cos 2t− 3
2(cos t− cos 3t) +

1− cos 4t

2
dt =
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= 4a2
[
t− 1

2 sin 2t+ 3
2 sin t+ 1

2 sin 3t+
t

2
− sin 4t

8

]πt
0

= 4a

(
3π

2

)
= 6πa2

Length L = 2
π∫
0

√(
dx

dt

)2

+

(
dy

dt

)2

= (after applying Pythagoras’ identity twice and the addition identity

for cosine) = 2
π∫
0

√
8a2(1− cos(2t− t)) dt = 16a (trivial details omitted for brevity.)

10. Four bugs are placed at the four corners of a square
with side length a . The bugs crawl counter-clockwise
at the same speed and each bug crawls directly to-
ward the next bug at all times. They approach the
center of the square along spiral paths.

(a) Find the polar equation of a bugs path assum-
ing the pole is at the center of the square. (Use
the fact that the line joining one bug to the next
is tangent to the bugs path.)

(b) Find the distance traveled by a bug by the time
it meets the other bugs at the center.

SOLN: As time progresses, symmetry suggests that the 4 bugs will occupy the corners of a shrinking and
rotating square. Thus we can assume that when the upper right bug is at (r, θ), the upper left but is

at
(
r, θ +

π

2

)
. Compute the slope of the line tangent to the upper right bug’s path in two ways: 1) it

is
dy

dx
=

dy/dθ

dx/dθ
=

d
dθr sin θ
d
dθr cos θ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

. Also, it is the slope of the line between the two bugs:

dy

dx
=
r sin θ − r sin(θ + π

2 )

r cos θ − r cos(θ + π
2 )

=
sin θ − cos θ

cos θ + sin θ
Equating these we have

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
sin θ − cos θ

cos θ + sin θ

Dividing through by cos θ:
dr
dθ tan θ + r
dr
dθ − r tan θ

=
tan θ − 1

1 + tan θ
⇔
(
dr

dθ
tan θ + r

)
(1+tan θ) =

(
dr

dθ
− r tan θ

)
(tan θ−

1)

⇔ dr

dθ
(tan θ + tan2 θ) + r + r tan θ =

dr

dθ
(tan θ + 1)− r tan2 θ + r tan θ

⇔ dr

dθ
(tan2 θ + 1) = −r(1 + tan2 θ)⇔ dr

dθ
= −r

This is a separable differential equation ⇔ dr

r
= −dθ ⇒

∫
dr

r
= −

∫
dθ ⇔ ln(r) = −θ + c⇔ r = e−θ+c =

Ae−θ

The initial condition is that when θ = π
4 , r =

√
2

2
a, soA =

√
2

2
aeπ/4 and thus r = f(θ) =

√
2

2
a exp(π/4− θ)

To find the distance the bug travels we need to know what θ gives r = 0, which is θ =∞ Yikes! No worries,

we can do integrals improperly! Length L =

∞∫
π/4

√√√√( d

dθ

√
2

2
a exp(π/4− θ)

)2

+

(√
2

2
a exp(π/4− θ)

)2

dθ

Now (f(θ))2 = (f ′(θ))2 =
a2

2
exp

(π
2
− 2θ

)
so L = a

∞∫
π/4

exp
(π

4
− θ
)
dθ = limb→∞−a exp

(π
4
− θ
) ∣∣∣b

π/4
= a


