## Math 1B

## Chapters 8 and 10 Test

Name (Print): \_\_\_\_\_

Write all responses on separate paper. Show your work for credit. You may consult with fellow students, but don't copy their work.

- 1. A thin sheet of metal is shaped like the region in the first quadrant between  $y = \sin x$  and  $y = \frac{x}{2}$ .
  - (a) Graph the region.
  - (b) Find the area of the region.
  - (c) Find the x-coordinate of the center of mass of the region.
  - (d) Find the y-coordinate of the center of mass of the region.
- 2. An art student was given a circular metal disk two feet in diameter and told to drill a small hole in it so that when the disk is cut in half and the piece with the hole is placed atop a spike stuck in the hole, it will balance. Not knowing about integrals, the artist drilled a hole at a point half-way between the center and the edge.
  - (a) Where *should* the student have drilled the hole?
  - (b) Now that she has made the mistake, she decides that rather than drill a second hole, she will cut the piece with the hole in it in such a way that it will balance on the spike at the point of the hole. Explain clearly how the disk should be cut so that our artist friend can understand.
  - (c) What is the area of the piece of the metal disk that balances at the point where the hole  $\left(\frac{1}{2},0\right)$  was drilled?
- 3. In each of the following, find the length of the given arc and use Pappus' theorem to find the volume of the solid obtained by rotating the given region,  $\mathcal{R}$ 
  - (a) Arc:  $y = \sin x$  from x = 0 to  $x = \pi$ .
    - $\mathcal{R}$ : One arch of the sine curve above the x-axis.
  - (b) Arc:  $y = x^2$  from x = 0 to x = 1.
    - $\mathscr{R}$ : The region between  $yu=x^2$  and  $y=\sin x$  in the first quadrant.
  - (c) Arc:  $y = \sqrt{1 \frac{x^2}{9}}$  from x = 0 to x = 3 (The integral is a special case of an *elliptic integral*.
    - $\mathscr{R}$ : The region in the first quadrant that lies beneath  $y = \sqrt{1 \frac{x^2}{9}}$  and outside the unit circle.
- 4. In this problem we will examine the length of the arc of the curve  $y = x^n$  on the interval [0, 1] for different values of n.
  - (a) Approximate the length of the arc of the curve  $y = x^n$  on the interval [0, 1] fpr n = 1, 10, 20, and 100.
  - (b) For the case n = 1 explain how you can get the answer very quickly by just looking at the graph.
  - (c) Discuss any pattern or trend you see in the calculations in Part (a).
  - (d) Plot the graphs of the four curves in Part 1 and use them to help explain what is happening to the arc lengths as n gets larger.
  - (e) Based on all the above, find  $\lim_{n\to\infty}\int_0^1\sqrt{1+(n+1)^2x^{2n}}\,dx$
  - (f) Repeat Parts (a) through (d) using the curve  $y = \sqrt{1-x^n}$  on the interval [-1,1].

- 5. We will explore what happens to the ratio of arc length to area on [0,1] as  $a \to \infty$  for four curves that depend on the parameter a. For each of the four functions that follow,
  - (i) Plot the graph of the function for a = 1.
  - (ii) Find the area bounded by the function and the x-axis on [0,1].
  - (iii) With pencil and paper, write down the integral formulas for the arc length on [0,1] and the area under the curve on [0,1]. Use these to find an integral formula for the limit of the ratio of arc length to area as  $a \to \infty$ .
  - (iv) Using your work in Part (iii), find the limit as  $a \to \infty$  of the ratio of arc length to area on [0, 1]
  - (v) By looking at the geometry of the graph, can you find a way to predict the limit in Part (iv) without doing the calculations?
  - (a)  $a(x x^2)$
  - (b)  $a\left(\frac{1}{2} \left|x \frac{1}{2}\right|\right)$
  - (c)  $a\sin(\pi x)$
  - (d) a time a semicircle of radius 1.
- 6. Consider a flat metal plate to be placed vertically under water with its top 2 meters below the surface of the water. Determine a shape for the plate so that if the plate is divided into any number of horizontal strips of equal height, the hydrostatic force on each strip is the same.
- 7. Find the centroid of the region enclosed by the ellipse  $x^2 + (x + y + 1)^2 = 1$ . Note that it's tilted...
- 8. Find a formula for the area of the surface generated by rotating the polar curve  $r = f(\theta), a \le \theta \le b$  (where f' is continuous and  $0 \le a < b \le \pi$ ), about the line  $\theta = \pi/2$ . Apply this to  $r = \cos(2\theta)$ .
- 9. Find the arclength and area enclosed by

$$x = 2a\cos t - a\cos(2t)$$

$$y = 2a\sin t - a\sin(2t)$$

for 
$$a = 1$$
 and  $a = 2$ 

- 10. Four bugs are placed at the four corners of a square with side length a . The bugs crawl counter-clockwise at the same speed and each bug crawls directly toward the next bug at all times. They approach the center of the square along spiral paths.
  - (a) Find the polar equation of a bugs path assuming the pole is at the center of the square. (Use the fact that the line joining one bug to the next is tangent to the bugs path.)
  - (b) Find the distance traveled by a bug by the time it meets the other bugs at the center.

