1. Simplify the class of antiderivatives for the indefinite integral $\int x^{2} \sin a x d x$.
2. Simplify the class of antiderivatives for the indefinite integral $\int z^{3} e^{z} d z$.
3. Simplify the class of antiderivatives for the indefinite integral $\int e^{-x} \cos x d x$.
4. Simplify the class of antiderivatives for the indefinite integral $\int_{1}^{4} \sqrt{t} \ln t d t$.
5. Simplify the class of antiderivatives for the indefinite integral $\int_{0}^{1 / 2} \sin ^{-1} t d t$
6. Simplify the class of antiderivatives for the indefinite integral $\int_{\pi / 4}^{\pi / 2} x \sec ^{2} x d x$.
7. Simplify the class of antiderivatives for the indefinite integral $\int x \tan ^{-1} x d x$.
8. First make a substitution, then use integration by parts to simplify $\int x^{5} \sin \left(x^{3}\right) d x$.
9. First make a substitution, then use integration by parts to evaluate $\int_{1}^{4} e^{\sqrt{x}} d x$.
10. You may find a graphing device useful here. Graph both the function the function $f(x)=x^{3} e^{x^{2}}$ and the antiderivative $F(x)=\int_{0}^{x} t^{3} e^{t^{2}} d t$
11. a) Prove the reduction formula $\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x$
b) Use part (a) to evaluate $\int \cos ^{2} x d x$
c) Use parts (a) and (b) to evaluate $\int \cos ^{4} x d x$
12. Use a reduction formula to shot that, for odd powers of sine, $\int_{0}^{\pi / 2} \sin ^{2 n+1} x d x=\frac{2 \cdot 4 \cdot 6 \cdots \cdot 2 n}{3 \cdot 5 \cdot 7 \cdots \cdots(2 n+1)}$
13. Prove that for even powers of sine, $\int_{0}^{\pi / 2} \sin ^{2 n} x d x=\frac{1 \cdot 3 \cdot 5 \cdot 7 \cdots \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots \cdot 2 n} \frac{\pi}{2}$
14. Let $I_{n}=\int_{0}^{\pi / 2} \sin ^{n} x d x$
(a) Show that $I_{2 n+2} \leq I_{2 n+1} \leq I_{2 n}$
(b) Use the result of exercise 12 to show that $\frac{I_{2 n+2}}{I_{2 n}} \leq \frac{2 n+1}{2 n+2}$
(c) Use parts (a) and (b) show that $\frac{2 n+1}{2 n+2} \leq \frac{I_{2 n+1}}{I_{2 n}} \leq 1$ and deduce that $\lim _{n \rightarrow 0} \frac{I_{2 n+1}}{I_{2 n}}=1$
(d) Use part (c) and Exercises 11 and 12 to show that

$$
\lim _{n \rightarrow 0} \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots \cdots \frac{2 n}{2 n-1} \cdot \frac{2 n}{2 n+1}=\frac{\pi}{2}
$$

(e) We construct rectangles as follows. Start with a square of area 1 and attach rectangles of area 1 alternately beside or on top of the previous rectangle (see the
figure). Find the limit of the ratios of width to height of these rectangles.

