1. The graph of y = f(x) is given. Assume that x = 0 is a vertical asymptote

- a. Estimate $\lim_{x\to -1} f(x)$ if it exists, or explain why it doesn't exist.
- b. Estimate $\lim_{x\to 1^+} f(x)$ if it exists, or explain why it doesn't exist.
- c. Estimate $\lim_{x \to a} f(x)$ if it exists, or explain why it doesn't exist.
- d. For what value(s) of a in [-5,4] does $\lim f(x)$ not exist?
- e. For what value(s) of a in [-5,4]does $\lim f(x)$ exist, while f is discontinuous?

- f. Where does the derivative function f'(x) have a jump discontinuity?
- 2. Find the limit. Explain your answers.

a.
$$\lim_{x \to 3} \frac{(x-1)^2 - 1}{x^2 - 9}$$
 b. $\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$ c. $\lim_{x \to \infty} \frac{\sin x}{1 + \ln x}$ d. $\lim_{x \to \infty} e^{\sin x}$

b.
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$

c.
$$\lim_{x \to \infty} \frac{\sin x}{1 + \ln x}$$

d.
$$\lim_{x\to\infty}e^{\sin x}$$

- Use the intermediate value theorem to prove that $\frac{18}{\pi^2}x^2 = \tan x$ has a solution in $\left(\frac{\pi}{6}, \frac{\pi}{4}\right)$.
- 4. If the tangent to y = f(x) at (0,3) passes through the point (2,0), find f'(0).
- 5. Find the derivative function for $f(x) = \frac{1}{x+1}$ using the definition of the derivative.
- Suppose that we don't have a formula for g(x) but we know that

$$g(2) = -4$$
 and $g'(x) = \frac{1}{\sqrt{x^3 + 1}}$ for all x.

- Find an equation for the tangent line at (2,-4).
- Use the tangent line approximation to estimate g(1.95) and g(2.05). b.
- Are your estimates in part (a) too large or too small? Explain.

- 7. Is there a number a such that $\lim_{x\to 2} \frac{x-a}{x^2+x-6}$ exists? If not, why not? If so, find the value of a and the value of the limit.
- 8. Consider $\lim_{x\to 0} \arctan(x+e^x)$.
 - a. State a theorem that is needed to evaluating this limit. Why are the conditions of the theorem met?
 - b. Use the theorem to evaluate the limit.
- 9. Consider $\lim_{x\to 0} \frac{\sin(x)}{x}$ and assume you've established the inequality $\cos x \le \frac{\sin x}{x} \le 1$ for x near zero.
 - a. State a theorem that is useful to evaluating this limit. Why are the conditions of the theorem met?
 - b. Use the theorem to evaluate the limit.
- 10. For the function f(x) whose derivative function f'(x) is graphed below, find where:
- a. f(x) is increasing
- b. f(x) has a local maximum.
- c. f''(x) is positive.
- d. f''(x) = 0.

Math 1A - Chapter 2 Test Solutions - Spring '08

1. The graph of y = f(x) is given. Assume that x = 0 is a vertical asymptote

c. $\lim_{x\to 1} f(x)$ doesn't exist, since

$$\lim_{x \to 1^{+}} f(x) = 1 \neq -3 = \lim_{x \to 1^{-}} f(x)$$

- d. $\lim_{x\to a} f(x)$ does not exist at a=0 and a=1.
- e. For $\lim_{x\to a} f(x)$ to exist, with f discontinuous at a, you'd have what's called a removable discontinuity. There's one at (-1,1) and another at (2,-4).

- f. The derivative function f'(x) has a jump discontinuity anywhere there's an instantaneous change in slope from one real number to another. This appears to happen where x = -2 and where x = 1.
- 2. Find the limit. Explain your answers.

a.
$$\lim_{x \to 3} \frac{(x-1)^2 - 1}{x^2 - 9} = \frac{3}{0^+} = \infty$$

b.
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{\left(\sqrt{x} - 1\right)\left(\sqrt{x} + 1\right)}{\left(x - 1\right)\left(\sqrt{x} + 1\right)} = \lim_{x \to 1} \frac{x - 1}{\left(x - 1\right)\left(\sqrt{x} + 1\right)} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}$$

c.
$$\lim_{x \to \infty} \frac{\sin x}{1 + \ln x} = 0$$
 by the squeeze theorem: $\frac{-1}{1 + \ln x} \le \frac{\sin x}{1 + \ln x} \le \frac{1}{1 + \ln x}$ and $\lim_{x \to \infty} \frac{\pm 1}{1 + \ln x} = \frac{\pm 1}{1 + \cos x} = 0$

- d. $\lim_{x \to \infty} e^{\sin x}$ does not exist since it oscillates between e^{-1} and e^{-1}
- 3. Use the intermediate value theorem to prove that $\frac{18}{\pi^2}x^2 = \tan x$ has a solution in $\left(\frac{\pi}{6}, \frac{\pi}{4}\right)$.

SOLN: Let $f(x) = \frac{18}{\pi^2}x^2 - \tan x$. Then f is continuous on $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$. Now since 0 is between

$$f\left(\frac{\pi}{6}\right) = \frac{18}{\pi^2} \frac{\pi^2}{36} - \tan\frac{\pi}{6} = \frac{1}{2} - \frac{1}{\sqrt{3}} < 0$$
 and $f\left(\frac{\pi}{4}\right) = \frac{18}{\pi^2} \frac{\pi^2}{16} - \tan\frac{\pi}{4} = \frac{9}{8} - 1 > 0$, so by the Intermediate

Value Theorem, there is c in $\left(\frac{\pi}{6}, \frac{\pi}{4}\right)$ such that f(c) = 0 and this c proves the existence of a solution.

4. If the tangent to y = f(x) at (0,3) passes through the point (2,0), find f'(0).

SOLN:
$$f'(0) = \frac{0-3}{2-0} = -\frac{3}{2}$$

5. Find the derivative function for $f(x) = \frac{1}{x+1}$ using the definition of the derivative.

SOLN:
$$f'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h+1} - \frac{1}{x+1}}{h} = \lim_{h \to 0} \frac{\frac{1}{x+h+1} - \frac{1}{x+1}}{h} \frac{(x+1)(x+h+1)}{(x+1)(x+h+1)} = \lim_{h \to 0} \frac{(x+1) - (x+h+1)}{h(x+1)(x+h+1)}$$
$$= \lim_{h \to 0} \frac{-h}{h(x+1)(x+h+1)} = \lim_{h \to 0} \frac{-1}{(x+1)(x+h+1)} = \frac{-1}{(x+1)^2}$$

6. Suppose that we don't have a formula for g(x) but we know that

$$g(2) = -4$$
 and $g'(x) = \frac{1}{\sqrt{x^3 + 1}}$ for all x.

1. Find an equation for the tangent line at (2,-4).

SOLN: The slope is
$$g'(2) = \frac{1}{\sqrt{2^3 + 1}} = \frac{1}{3}$$
 so the tangent line is described by $y = -4 + \frac{1}{3}(x - 2)$

2. Use the tangent line approximation to estimate g(1.95) and g(2.05). SOI N.

$$g(1.95) \approx -4 + \frac{1}{3}(1.95 - 2) = -4 - \frac{.05}{3} = -4 - \frac{1}{60} = -4.01\overline{6}$$

 $g(2.05) \approx -4 + \frac{1}{3}(2.05 - 2) = -4 + \frac{.05}{3} = -4 + \frac{1}{60} = -3.98\overline{3}$

3. Are your estimates in part (a) too large or too small? Explain.

SOLN: Since the slopes
$$g'(x) = \frac{1}{\sqrt{x^3 + 1}}$$
 are decreasing in a neighborhood of 2, the function is concave down and so the tangent line is above the curve and these are overestimates.

7. Is there a number a such that $\lim_{x\to 2} \frac{x-a}{x^2+x-6}$ exists? If not, why not? If so, find the value of a and the value of the limit.

SOLN:
$$\lim_{x\to 2} \frac{x-a}{x^2+x-6} = \lim_{x\to 2} \frac{x-a}{(x+3)(x-2)} = \frac{1}{5} \iff a=2$$

- 8. Consider $\lim_{x\to 0} \arctan(x+e^x)$.
 - a. Theorem: if $L = \lim_{x \to a} f(x)$ exists and g is continuous at L then $\lim_{x \to a} g[f(x)] = g[\lim_{x \to a} f(x)] = g(L)$ In this case, all the functions involved are continuous everywhere, so the conditions of the theorem are met.

b.
$$\lim_{x \to 0} \arctan\left(x + e^x\right) = \arctan\left(\lim_{x \to 0} x + \lim_{x \to 0} e^x\right) = \arctan\left(1\right) = \frac{\pi}{4}$$

9. Consider $\lim_{x\to 0} \frac{\sin(x)}{x}$ and assume you've established the inequality $\cos x \le \frac{\sin x}{x} \le 1$ for x near zero.

- a. The squeeze theorem says that if $f(x) \le g(x) \le h(x)$ in some neighborhood of a and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$ then $\lim_{x \to a} g(x) = L$. In this case, $1 = \lim_{x \to 0} 1 = \lim_{x \to 0} \cos(x)$
- b. Thus $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$
- 10. For the function f(x) whose derivative function f'(x) is graphed at right,
 - a. f is increasing on $(-10,-6) \cup (-2,4) \cup (6,7)$
 - b. f has a local maximum where x = -6
 - c. f''(x) is positive on $(-4,0) \cup (6,7)$
 - d. f''(x) = 0 on $(-10, -8) \cup (4, 6)$.

