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Phoebe Floats! 
Ezra Brown 

Ezra (Bud) Brown (brown@math.vt.edu; Virginia 
Polytechnic Institute & State University, Blacksburg, VA 
24061) grew up in New Orleans and has degrees from Rice 
and LSU. He arrived at Virginia Tech shortly after Hurricane 
Camille, and has been there ever since, with time out for 
sabbatical visits to Washington, DC (where he has spent 
his summers since 1993) and Munich. He has done 
research in number theory, discrete mathematics, and 
expository mathematics. He has received a teaching award 
and three writing awards from the MAA. The idea for this 
article came from his long-standing interest in calculus, the 
history of mathematics, and astronomy. The inspiration, 
however, came from the students mentioned in this story 
and from his granddaughter Phoebe Rose. 

-To Phoebe Rose: the One True Phoebe. 

When history of mathematics classes encounter ancient problems, the discussions 
can be both lively and unpredictable. This story, about one such instance, begins with 
a seemingly irrelevant remark about a heavenly body, which leads to a question. Along 
the way, we'll encounter Archimedes' answer to this question, Newton's method, the 
behavior of Newton's method under iteration, and repelling periodic points. 

The problem 
We had already discussed Archimedes' solution of how to divide a sphere into two 
segments whose volumes were in a given ratio of a : b, and the students had read up 
on the Law of Floating Bodies. We were talking about what they had read when Mark, 
a student with many interests, said, "By the way, did you know that Phoebe floats?" 

This brought a halt to the proceedings and prompted many questions: "What do you 
mean?", "Who's Phoebe?", and "What's that got to do with Archimedes?" 

"Phoebe is a satellite of Saturn," replied Mark, "and they say that it's less dense 
than water, so if you drop it into the ocean, it floats." (See Figure 1.) This intelligence 

Figure 1. Phoebe afloat 
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proved to be from a website [1], which also gave Phoebe's diameter as 220 kilometers 
and its mass as 4.0 x 1018 kilograms. A few seconds later: "That puts the density at 
about 7/10." 

"I think this does have something to do with Archimedes," said Carla. "The book 
says that if you know the density of a floating ball, you can figure out how far down 
the bottom of the ball sinks below the surface. So, we can .. ." 

"..6. we can see how far Phoebe would sink by knowing her density and comparing 
the volume below the surface to the volume above the surface," Jason broke in, "and 
then . . ." 

"..6. calculate the volume in terms of the unknown depth, using integrals," added 
Nick, "and ..." 

".. . back-solve for the depth," finished Karen triumphantly. 
"Great!" I said. "Go home, solve the problem, write it up, and present it to the class 

next time." So they did. 
In this article, we'll see how the students solved the problem. We will also examine a 

particularly interesting wrinkle to the problem (see [4]), involving the chaotic behavior 
of Newton's method applied to a cubic polynomial. 

Solving the original problem 
To standardize the problem, we'll work with a ball of radius 1 and Phoebe's den- 
sity 7/10, then scale up to find the results for Phoebe. We also assume that the density 
of water is 1. Here is a statement of the problem. 

A ball of radius 1 and density 7/10 is placed in a body of water. How far down does 
the ball sink below the surface? 

Archimedes' Law of Floating Bodies states that a body immersed in a fluid dis- 
places an amount of fluid equal in weight to the weight of the body, provided the body 
is less dense than the fluid. In plain English, a floating object displaces its weight. An 
object of density 3 and volume V cubic units weighs exactly as much as an amount 
of water of volume 3 - V cubic units. That means that our ball sinks until exactly 8 
percent of its volume is underwater. 

We now translate the problem into mathematics. We represent the ball by its cross- 
section through the poles, namely a circle of radius 1 with its center at the origin. The 
waterline is a horizontal line, and the depth underwater is a length we'll call r. In the 
case of density 1/2, half the ball is submerged and the depth equals 1, the radius. Since 
our density is greater than 1/2, it's clear that more than half of Phoebe is submerged, 
and so r is between 1 and 2. 

We place the ball so that its south pole is at (0, -1) and so that the waterline inter- 
sects the y-axis at the point (0, -1 + r); see Figure 2. The volume of a ball of radius 1 
is equal to 4.r/3, so our mission is to find that value of r so that the segment of the ball 
between y = -1 and y = -1 + r has volume (47r/3)(7/10), or 70% of the volume of 
the ball. 

We may now set up an integral to find the volume of the segment. Since the equation 
of the unit circle is x2 + y2 = 1, a slice of the segment through yk of thickness Ayk has 
radius = The volume Vk of the slice is then r(1 - y) Ayk. Hence, the volume 

Vs of the segment is approximated by ir(1 and so 

= 
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Figure 2. Phoebe with calculus 

= 

and a little algebra shows that 

= 

Thus, r satisfies r3 - 3r2 More generally, if the ball has density 3 then r 
satisfies r3 - 3r2 + 48 = 0. 

Nick, who kept up with the latest events in the scientific world, asked, "Is this 
how Archimedes solved the problem? I once thought that he didn't have integrals, but 
aren't the people who are studying his Method saying that he came awfully close to 
integrals?" I pounced on this teachable moment: "Good question, why don't some of 
you read about what's in the Method and let the rest of us know." 

What the students learned was that Archimedes' solution to this problem was ex- 
tremely clever. First, he observed that a spherical sector (think of an ice-cream cone 
with vertex at the center of the sphere) is composed of a spherical segment sitting on 
top of a right circular cone. Then, he used Eudoxus's Method of Exhaustion to prove 
that the volume of a spherical sector is equal to one-third of the product of its radius 
and the area of its spherical curved surface. Since he knew how to find the volume of a 
right circular cone, all he had to do was subtract volumes, and what remained was the 
volume of his spherical segment. In particular, he found the formula for the volume 
of a sphere by pointing out that the entire sphere is also an ice-cream cone. See [5, 
pp. 62-66] for Archimedes' original proof, and [7, Chapter 10] for an illuminating 
discussion. 

In their own solutions, the students did the integration and arrived at the last 
equation without much difficulty. They were surprised by the appearance of a cubic 
polynomial, but most of them found the roots of r3 - 3r2 + 14/5 using a calculator 
or a computer algebra system. However, Matt, our chief skeptic, had a good question: 
"Wait a minute, r3 - 3r2 + 43 is a cubic polynomial. Isn't there a cubic formula?" 
"Yes, there is," I said. "It was found in the sixteenth century, and the tale of its 
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discovery is full of intrigue, treachery, murder, and-but that's a whole nother story." 
(See [2, pp. 291-309] for further details.) 

But Matt would not be put off. "Don't start with your digressions ... just give us 
the word on the cubic formula." So I did. 

The Cardano-Tartaglia formula, as it's called, is an algebraic expression for the 
three roots of an arbitrary cubic polynomial. The formula gives the three roots of 
r3 - 3r2 + 14/5 as 

r,= (1) 

At this point, Karen pointed out that it is not at all obvious which of the three 
values of rj from equation (1) gives us "the answer." "And another thing," she added. 
"What would we have done without the cubic formula? If we had to find the roots of a 
seventh-degree polynomial, we'd need a computer, so how do computers find roots of 
functions?" 

This was an excellent question, so we pushed on. One of the root-finding strategies 
a computer algebra system (or CAS) employs is popularly known as Newton's method, 
so let's talk about Newton's method. 

Cubic equations, CAS, and Newton's method 
From the graph of y = r3 - 3r2 + 14/5, we see that there is a root in each of the in- 
tervals (-1, 0), (1, 2), and (2, 3). Our friendly CAS comes to the rescue and discloses 
that, to six decimal places, the three roots are -0.852523, 1.273485, and 2.579038, 
and this seems to agree with the graph in Figure 3. These three roots correspond to the 
solutions in equation (1) for j = 1, 2, and 0, respectively. Problem solved--or is it? 

2 = 

1 

-1 1 2 3 

-1 

Figure 3. The roots of r3 - 3r2 + 14/5 

You see, the physical problem has only one solution: if you throw a body, er, a moon 
of Saturn, into water, it sinks to only one level. Which of these roots is "the answer"? 
To figure that out, we go back to our original formulation. The ball had radius 1 and the 
depth r was between 1 and 2. Thus, the answer to our problem is r2, or 1.273485 to six 
places. Phoebe's radius is about 110 km, so she sinks to a depth of about 140.083 km. 
This means that when viewed while in the water, Phoebe looks like a spherical segment 
about 80 km high (about 49 miles) at its highest point. Problem solved; we're done. 
Or are we? 

Well, not quite. How, for example, did the CAS find those three roots? Surely we 
don't believe the answers merely because they were found by a computer? 
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In fact, we are on solid ground here. The typical CAS package uses a number of 
strategies for finding roots, but mainly Newton's Method. 

Newton began with some convenient approximation xo to a root of a given differ- 
entiable function f. He then noticed that under favorable conditions, x = xo - f(XO 
is closer than xo to the root in question. 

So he defined a sequence of numbers {xn} by putting x,+l = xn, - .X Now under 
those favorable conditions, which occur for example in Figure 4, the sequence {x,n 

converges to a root of f. (See [2, pp. 58-66] for further details.) 

x3 x2 x1 

Figure 4. Newton's Method 

To find how much of Phoebe rises up out of the ocean, we want to use New- 
ton's method to approximate the roots of f(x) = x3 - 3x2 + 14/5. Since f'(x) = 

3x2 - 6x, our "Newton function" for this problem is 

= 

To begin, we choose some convenient value for xo; the only restriction is that it can't 
be either 0 or 2 (why so?). We then evaluate N(xo) and call that xl; we evaluate N(xl) 
and call that x2, and so forth. But if a function has more than one root, then different 
starting values for xo might converge to different roots, as we see in Table 1 (values 
are calculated to 10 places): 

Table 1. N(xi) for xo = -1, 1 and 3 

i xi xi xi 

0 -3 1 5 
1 -1.8637735810 1.2899370483 3.8251153078 
2 -1.2145647824 1.2988070666 3.1116597461 
3 -0.9287789619 1.2988323699 2.7309306013 
4 -0.8651469860 1.2988323701 2.5868016405 
5 -0.8620310100 1.2988323701 2.5637711504 
6 -0.8620236739 1.2988323701 2.5631916674 
7 -0.8620236739 1.2988323701 2.5631913037 
8 -0.8620236739 1.2988323701 2.5631913037 

It is clear that what we are doing is iterating the function N. If all goes well, the 
iterates will converge to a root. It doesn't always go well, however; but for f(x) = 

x3 - 3x2 + 14/5 it appears that N behaves itself and everything works out just fine. 
At this point, I threw the class a curve. 
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Sensitive dependence on initial conditions 
"Here are three starting values for Newton's method," I told them, "that differ only by 
1 or 2 in the fifth decimal place: 1.86693, 1.86695, and 1.86696. Any guesses as to 
what will happen when you run the algorithm on them?" Most of the class seemed to 
think that such a small difference would not affect the outcome. 

Carla, however, was suspicious. "What's so special about those numbers? You must 
have something tricky up your sleeve." Carla was right, for it turns out that Newton's 
method can be quite sensitive to the starting value. Just look at the following successive 
values of N: 

Table 2. N(xi) for xo = 1.86693, 
1.86695 and 1.86696 

I xi xi xi 

0 1.86693 1.86695 1.86696 
1 0.32495 0.324788 0.324627 
2 1.86669 1.8673 1.86792 
3 0.327563 0.320908 0.314178 
4 1.85679 1.88237 1.90951 
5 0.426005 0.135938 -0.359362 
6 1.58572 3.74961 -1.28961 
7 1.20201 3.07184 -0.94907 
8 1.27228 2.71974 -0.858907 
9 1.27348 2.59596 -0.852554 

10 1.27349 2.57933 -0.852524 
11 1.27349 2.57904 -0.852524 
12 1.27349 2.57904 -0.852524 

The students were surprised at this turn of events, and immediately wanted to know 
what this was all about. "You rigged the starting numbers," said Jason. "The successive 
approximations look like they bounce back and forth for a while between somewhere 
around 1.867 and somewhere around 0.325, and then they escape." "And their escape 
routes all head to different roots of f(x)," added Mark. 

Apparently, the Newton function is extremely sensitive to changes in the starting 
value whenever that starting value is close to 1.867 or 0.325-that is, N has sensitive 
dependence on initial conditions. 

In his Method of Fluxions, written around 1671, Newton describes the method for 
approximating solutions of equations; he does not discuss situations such as the behav- 
ior we see in Table 2. Historically, the first person to identify sensitive dependence on 
initial conditions was Henri Poincare. In his 1892 study [6] of the three-body problem, 
Poincare points out that in some physical situations, small differences in the initial 
conditions may produce great differences in the outcomes. 

But let us return to our Newton function. Is it sensitive dependence on initial con- 
ditions that is causing this odd behavior? 

To help describe what is going on we introduce some notation from dynamical 
systems theory, which describes how functions behave under iteration. Let F be a 
function, and let Fk denote the kth iterate of F. We also let Fo denote the identity 
function, and, to avoid confusion, write (F(x))k for the kth power of F(x). If a is 
a point and k is a positive integer for which Fk(a) = a, then a is called a point of 
period k of F. The least such value of k is called the period of a, and for such k, 
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the set {a, F(a), F2(a), ..., Fk-1(a)} is called a k-cycle of F. A fixed point of F is a 
point a such that F (a) = a. 

As before, let rl, r2, and r3 be the roots of f(x) = x3 - 3x2 + 14/5. It turns out 
that: 

(1) N(ri) = ri, so that the roots of f are the fixed points of N. 

(2) There exist two points, namely sl = 0.32488... and s2 = 1.86693... for 
which N(sl) = S2 and N(s2) = Sl (see Figure 5). Thus, sl and s2 are points 
of period 2, and {SI, s2} is a 2-cycle of N. Note that sl and s2 are fixed points 
of N2 

(3) Points near ri move closer to ri under iterates of N. Thus, we call the roots of 
f attracting fixed points of N. Points near sl (or s2) move away from sl (or s2) 
under iterates of N. Thus, we call {IS, s2} a repelling 2-cycle of N. 

2 

1.5 

1 

0.5 

(s1,N(S1)) (S2,S2) 

(S1,S1) (S2,N(S2)) 

0.5 1 1.5 2 

Figure 5. A Newtonian 2-Cycle 

Here is the explanation of the behavior of N(x) in Tables 1 and 2. The starting 
points in Table 1 are not close to any repelling cycle of N. The starting points in Table 
2, however, are close to the repelling 2-cycle {sl, s2}, and that accounts for the Newton 
function's sensitive dependence on initial conditions. 

The following theorem tells most of the story. For a proof, see [3, § 1.4]. 

Theorem 1. Let g : R *R be a differentiable function. 

(a) Assume s is a fixed point of g. If Ig'(s) I < 1, then s is an attracting fixed point 
of g, while if Ig'(s)l > 1, then s is a repelling fixed point of g. 

(b) Assume s is a point of period n of g. If I (gn)'(s) I < 1, then s is on an attracting 
n-cycle of g, and if I (gn)'(s)lI > 1, then s is on a repelling n-cycle of g. 

Matt looked up from his calculator and announced that d(N2(si)) is about 
41.1774... for both period-2 points si and s2, "and that is clearly greater than 1, 
so by Theorem 1(b), {sI, s2} is a repelling 2-cycle of N(x)." He added, "So this 
explains why the Newton function's behavior depends sensitively on those starting 
values." 
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"Absolutely right," I said, "and furthermore ..." 
"Wait a minute," broke in Leigh, who usually had the last word. "Aren't there a 

number of things wrong with this whole Phoebe experiment?" Before I could answer, 
the bell rang. "Next time, we'll talk about the thirteen Archimedean semiregular poly- 
hedra ... or is it fourteen?" Immediately, the class wanted to know what a semiregular 
polyhedron is, and whether it was 13 or 14. "Ah, yes, 13 or 14? Well, that's another 
story. And by the way," I called out as the class scattered, "did you know that Saturn 
also floats?" 

Questions 
What happens with Newton functions for other polynomials? It depends. Play 
around with Newton's method for different functions and see what happens. If you 
have a CAS with a nice graphics package, you can construct a picture of which start- 
ing points converge to which roots. For cubic polynomials, you might use three dif- 
ferent colors for the roots. You may even try complex numbers for the starting points, 
and get a very interesting picture as the end result. For example, you might prove the 
following somewhat surprising theorem: Let f(x) = x3 - a, let N(x) be its Newton 
function and let {s1, s2} be a 2-cycle of N(x). Then for all values of a and for all 

2-cycles, = 6. 

How did you find those starting values in Table 2 in the first place? For f(x) = 

x3 - 3x2 + 14/5, the function N2(x) can be written as a quotient p(x)/q(x), where 
p and q are polynomials with integer coefficients and degrees 9 and 8, respectively. A 
CAS has very little trouble finding accurate numerical approximations to the roots of 
N2(x) = x. There are the three fixed points rl, r2, and r3, the 2-cycle {sl, s2}, and two 
nonreal 2-cycles, each of which is a pair of conjugate complex numbers. 

Are there functions with attracting 2-cycles, and what about 3-cycles? The 
function g(x) = x2 - 31/25 has two fixed points, namely (5 - /149)/10 and 

(5 + vT/ and the 2-cycle {-6/5, 1/5}. You can show that the 2-cycle is at- 
tracting, and that the fixed points are both repelling. As for 3-cycles, the function 
h(x) = 4x(1 - x) has a repelling 3-cycle that I'll let you find. Here is a hint: what is 
h (sin2 0)? 

What makes Phoebe float? And while we're on the subject, how do they know the 
densities and sizes of distant planets, satellites, stars and galaxies? The website [8] 
has a wealth of accessible information that gives the answers to these and many other 
questions about astronomy. 

What's wrong with "this whole Phoebe experiment?" Haven't you made a great 
many simplifying assumptions? Guilty as charged. The simplifying assumptions fly 
in the face of the following realities: sea water does not have density 1, the density of 
water in a real ocean is not uniform, the earth is not flat, and gravity is not uniform. 
Worse than that, there is one big mistake that invalidates the entire set-up. It is difficult 
to float a moon whose diameter is about 137 miles in an ocean whose greatest depth is 
not quite seven miles, isn't it? 
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Proof Without Words: A Partial Fraction Decomposition 
Steven J. Kifowit (skifowit@prairiestate.edu), Prairie State College, Chicago, IL 
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