Show your work for credit. Write all responses on separate paper. Do not use a calculator.

8

7 6

5

4 3

2

-2

-3

-5

-6 -7

-8

1. The graph of y = f(x) is given.

- b. Find $\lim f(x)$ if it exists, or explain why it doesn't exist.
- c. Find $\lim_{x \to \infty} f(x)$ if it exists, or explain why it doesn't exist.
- d. Find $\lim f(x)$ if it exists, or explain why it doesn't exist.
- e. For what value(s) of x does the function have a removable discontinuity?
- f. For what value(s) of x does the function have a jump discontinuity?
- g. What horizontal and vertical asymptote(s) does the graph suggest?

-10 -9 -8

3. Prove each statement using the precise definition of the limit.

a.
$$\lim_{x \to 1} (3x - 1) = 2$$

b.
$$\lim_{x \to 1} \frac{1}{\sqrt{x-1}} = \infty$$

- 4. Use the intermediate value theorem to prove that $2x^3 + x^2 + 2 = 0$ has a solution in (-2, -1). Be sure to carefully indicate that the conditions of the theorem are satisfied for some function
- 5. If the tangent to y = f(x) at (5,3) passes through the point (1,2), find f'(5).
- 6. Find the derivative function for $f(x) = x^3 + x$ using the definition of the derivative.
- 7. Is there a number a such that $\lim_{x\to 1} \frac{x+2a}{x^2+x-2}$ exists? If not, why not? If so, find the value of a and the value of the limit.

- 8. Consider $\lim_{x\to 0} \sin(x+e^x)$.
 - a. State a theorem that is needed to evaluating this limit. Why are the conditions of the theorem met?
 - b. Use the theorem to evaluate the limit.
- 9. Consider $\lim_{x\to 0} \frac{\sin(x)}{x}$ and assume you've established the inequality $\cos x \le \frac{\sin x}{x} \le 1$ for x near zero.
 - a. State a theorem that is useful to evaluating this limit. Why are the conditions of the theorem met?
 - b. Use the theorem to evaluate the limit.
- 10. For the function f(x) whose derivative function f'(x) is graphed below, find where:
 - a. f(x) is increasing
 - b. f(x) has a local maximum.
 - c. f''(x) is positive.
 - d. f''(x) = 0.

Math 1A - Chapter 2 Test Solutions - Fall '10

1. The graph of y = f(x) is given.

b.
$$\lim_{x \to -5^{-}} f(x) = -5$$

c.
$$\lim_{x \to -5^{+}} f(x) = -8$$
.

d.
$$\lim_{x\to 2} f(x) = 3$$
.

- e. There is a removable discontinuity where x = 2.
- f. There are jump discontinuities where x = -5 and where x = 6.
- g. The horizontal asymptotes appear to run along y = -4 and y = 7. The vertical asymptote appears to be along x = -2.

- h. The derivative function f'(x) has jump discontinuities where the slope changes instantaneously from one value to another. This occurs at (-7, -5), (-3,0), (-1,0), at (3,5), where x = -5 and where x = 6.
- 2. Find the limit.

a.
$$\lim_{x \to 4} \frac{x^2 - 16}{x^3 - 64} = \lim_{x \to 4} \frac{(x - 4)(x + 4)}{(x - 4)(x^2 + 4x + 16)} = \lim_{x \to 4} \frac{x + 4}{x^2 + 4x + 16} = \frac{1}{8}$$

b.
$$\lim_{x \to \infty} \frac{x^2 - 3}{\sqrt{9x^4 - x^2}} \frac{\div x^2}{\div \sqrt{x^4}} = \lim_{x \to \infty} \frac{1 - \frac{3}{x^2}}{\sqrt{9 - \frac{1}{x^2}}} = \frac{1}{3}$$

c.
$$\lim_{x \to \infty} \frac{1}{1 + e^{-x}} = \frac{1}{1 + \lim_{x \to \infty} e^{-x}} = \frac{1}{1 + 0} = 1$$

d.
$$\lim_{x \to 1} \frac{1}{\ln |x^2 - 1|} = \frac{1}{\lim_{x \to 1} \ln |x^2 - 1|} = \frac{1}{-\infty} = 0$$

- 3. Prove each statement using the precise definition of the limit.
 - a. $\lim_{x\to 1} (3x-1) = 2$ PROOF: Given any $\varepsilon > 0$, Choose $\delta = \frac{\varepsilon}{3}$ then

$$|x-1| < \delta \Rightarrow |x-1| < \frac{\varepsilon}{3} \Rightarrow 3|x-1| < \varepsilon \Rightarrow |3x-3| < \varepsilon \Rightarrow |f(x)-2| < \varepsilon$$

b. $\lim_{x\to 1} \frac{1}{\sqrt{x-1}} = \infty$ PROOF: Let N be a number as large as is required. Let $\delta < \frac{1}{N^2}$ then

$$|x-1| < \delta \Rightarrow |x-1| < \frac{1}{N^2} \Rightarrow \frac{1}{|x-1|} > N^2 \Rightarrow \frac{1}{\sqrt{x-1}} > N$$
. Actually, an exacting pedant may object to

the last step in this sequence of implications. Why?

- 4. Use the intermediate value theorem to prove that $2x^3 + x^2 + 2 = 0$ has a solution in (-2, -1). SOLN: $f(x) = 2x^3 + x^2 + 2$ is a polynomial function, so we know it's continuous everywhere. $f(-2) = 2(-2)^3 + (-2)^2 + 2 = 2(-8) + 4 + 2 = -10$ and $f(-1) = 2(-1)^3 + (-1)^2 + 2 = 2(-1) + 1 + 2 = 1$ Thus 0 is a number between f(-2) and f(-1) and by the IVT, there is a value c between -2 and -1 such that f(c) = 0. This number c is then the required solution to the equation $2x^3 + x^2 + 2 = 0$.
- 5. If the tangent to y = f(x) at (5,3) passes through the point (1,2), then $f'(5) = \frac{\Delta y}{\Delta x} = \frac{3-2}{5-1} = \frac{1}{4}$.
- 6. Find the derivative function for $f(x) = x^3 + x$ using the definition of the derivative.

SOLN:
$$f'(x) = \lim_{a \to x} \frac{f(x) - f(a)}{x - a} = \lim_{a \to x} \frac{x^3 + x - a^3 - a}{x - a} = \lim_{a \to x} \frac{(x - a)(x^2 + ax + a^2) + (x - a)}{x - a}$$
$$= \lim_{a \to x} x^2 + ax + a^2 + 1 = 3x^2 + 1$$

7. Is there a number a such that $\lim_{x\to 1} \frac{x+2a}{x^2+x-2}$ exists? If not, why not? If so, find the value of a and the value of the limit. SOLN:

$$\lim_{x \to 1} \frac{x + 2a}{x^2 + x - 2} = \lim_{x \to 1} \frac{x + 2a}{(x + 2)(x - 1)}$$
 so if $a = -\frac{1}{2}$ then the discontinuity is removable and the limit is $1/3$.

- 8. Consider $\lim_{x\to 0} \sin(x+e^x)$.
 - a. Theorem: if $L = \lim_{x \to a} f(x)$ exists and g is continuous at L then $\lim_{x \to a} g[f(x)] = g[\lim_{x \to a} f(x)] = g(L)$ In this case, all the functions involved are continuous everywhere, so the conditions of the theorem are met.
 - b. $\lim_{x\to 0} \sin(x+e^x) = \sin(\lim_{x\to 0} x + \lim_{x\to 0} e^x) = \sin(1)$.
- 9. Consider $\lim_{x\to 0} \frac{\sin(x)}{x}$ and assume you've established the inequality $\cos x \le \frac{\sin x}{x} \le 1$ for x near zero.
 - a. The squeeze theorem says that if $f(x) \le g(x) \le h(x)$ in some neighborhood of a and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$ then $\lim_{x \to a} g(x) = L$. In this case, $1 = \lim_{x \to 0} 1 = \lim_{x \to 0} \cos(x)$
 - b. Thus $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$
- 10. For the function f(x) whose derivative function f'(x) is graphed at right,
 - a. *f* is increasing on $(-10, -6) \cup (-2, 4) \cup (6, 7)$
 - b. f has a local maximum where x = -6
 - c. f''(x) is positive on $(-4,0) \cup (6,7)$
 - d. f''(x) = 0 on $(-10, -8) \cup (4, 6)$.

