Math 5 – Trigonometry – Take Home Test Problems for Chapter 11.

Show your work for credit. Give as much detail in your answer as you can.

- 1. Consider the conic described by $r = \frac{2}{3+3\cos\theta}$
 - a. Write the conic in standard polar form and determine whether it is a parabola, ellipse or hyperbola.
 - b. Find the directrix of the conic.
 - c. Sketch a graph of the conic showing key features such as vertices, foci, asymptotes, etc.
 - d. Find the necessary parameters and write the conic in rectangular form.
 - e. Give parametric equations for the conic.
- 2. Consider the conic described by $r = \frac{12}{6-3\cos\theta}$
 - a. Write the conic in standard polar form and determine whether it is a parabola, ellipse or hyperbola.
 - b. Find the directrix of the conic.
 - c. Sketch a graph of the conic showing key features such as vertices, foci, asymptotes, etc.
 - d. Find the necessary parameters and write the conic in rectangular form.
 - e. Give parametric equations for the conic.
- 3. Consider the conic described by $r = \frac{24}{4-8\sin\theta}$
 - a. Write the conic in standard polar form and determine whether it is a parabola, ellipse or hyperbola.
 - b. Find the directrix of the conic.
 - c. Sketch a graph of the conic showing key features such as vertices, foci, asymptotes, etc.
 - d. Find the necessary parameters and write the conic in rectangular form.
 - e. Give parametric equations for the conic.

Math 5 - Trigonometry - Take Home Test Problems Solutions for Chapter 11.

- 1. Consider the conic described by $r = \frac{2}{3+3\cos\theta}$
 - a. Write the conic in standard polar form and determine whether it is a parabola, ellipse or hyperbola. SOLN: $r=\frac{2}{3+3cos\theta}=\frac{2/3}{1+\cos\theta}$ means this is a parabola.
 - b. Find the directrix of the conic.

SOLN: The form of the equation is $r=\frac{ed}{1+ecos\theta}=\frac{2/3}{1+cos\theta}$ so e=1 and $d=\frac{2}{3}$ so the directrix is $x=\frac{2}{3}$

c. Sketch a graph of the conic showing key features such as vertices, foci, asymptotes, etc. SOLN: Here d = the distance from the focus to the directrix. So the vertex is at $\left(\frac{1}{3},0\right)$, the focus is at (0,0),

the parabola opens to the left and the focal diameter has length 4/3, from $(0, -\frac{2}{3})$ to $(0, \frac{2}{3})$.

Tabulating values, we have

٠.	8							
	θ	0	$\pm \pi/3$	$\pm \pi/2$	$\pm 2\pi/3$			
	r	1/3	4/9	2/3	4/3			

The graph below was developed using the Geogebra applet at

http://webspace.ship.edu/msrenault/ggb/polar grapher.html

d. Find the necessary parameters and write the conic in rectangular form.

SOLN: Using the vertex form: $x = h + a(y - k)^2$ and the vertex $(h, k) = \left(\frac{1}{3}, 0\right)$ we get $x = \frac{1}{3} + ay^2$ and since the parabola passes through $\left(0, \frac{2}{3}\right)$, $0 = \frac{1}{3} + \frac{4}{9}a \Leftrightarrow a = -\frac{3}{4}$ and so $x = \frac{1}{3} - \frac{3}{4}y^2$.

e. Give parametric equations for the conic.

SOLN: Just let $y = t, x = \frac{1}{3} - \frac{3}{4}t^2$

- 2. Consider the conic described by $r = \frac{12}{6-3\cos\theta}$
 - a. Write the conic in standard polar form and determine whether it is a parabola, ellipse or hyperbola.

SOLN: In standard form, $r=\frac{2}{1-\frac{1}{2}cos\theta}$, so this is an ellipse with eccentricity, $e=\frac{1}{2}$.

b. Find the directrix of the conic.

SOLN: Since $ed = \frac{1}{2} \cdot d = 2$, d = 4 and the directrix is x = -4.

c. Sketch a graph of the conic showing key features such as vertices, foci, asymptotes, etc.

Make a table of values

θ	0	$\pm \pi/3$	$\pm \pi/2$	$\pm 2\pi/3$	$\pm\pi$
r	4	8/3	2	8/5	4/3

d. Find the necessary parameters and write the conic in rectangular form.

SOLN: The major axis extends from $\left(-\frac{4}{3},0\right)$ to (4,0) and so the center is at $x=\frac{-\frac{4}{3}+4}{2}=\frac{4}{3}$ and the distance from the center to a focus is $c=\frac{4}{3}$, while the distance from the center to a vertex is $a=\frac{8}{3}$. Thus $b^2=a^2-c^2=\frac{64}{9}-\frac{16}{9}=\frac{16}{3}$. The rectangular form is then

$$\frac{\left(x - \frac{4}{3}\right)^2}{\frac{64}{9}} + \frac{y^2}{\frac{16}{3}} = 1 \Leftrightarrow \frac{9\left(x - \frac{4}{3}\right)^2}{64} + \frac{3y^2}{16} = 1$$

e. Give parametric equations for the conic.

SOLN: $x = \frac{4}{3} + \frac{8}{3}\cos t$, $y = \frac{4\sqrt{3}}{3}\sin t$

- 3. Consider the conic described by $r = \frac{24}{4-8\sin\theta}$
 - a. Write the conic in standard polar form and determine whether it is a parabola, ellipse or hyperbola.

SOLN: $r = \frac{6}{1 - 2\sin\theta}$ has e = 2, so it's a hyperbola.

b. Find the directrix of the conic.

SOLN: Here ed = 2d = 6 so d = 3 and the directrix is y = -3.

Sketch a graph of the conic showing key features such as vertices, foci, asymptotes, etc.

SOLN: Make a table of values

θ	0	$\pi/3$	$\pi/2$	$2\pi/3$	π	$7\pi/6$	$3\pi/2$	$11\pi/6$
r	6	$-3(1+\sqrt{3}) \approx -8.2$	-6	$-3(1+\sqrt{3})\approx -8.2$	6	3	2	3

c. Find the necessary parameters and write the conic in rectangular form.

SOLN: The center is at (h,k)=(0,-4) with vertices at (0,-2) and (0,-6) so a=2 and c=4 giving us $b^2=16-4=12$. Thus the equation is $\frac{(y+4)^2}{4}-\frac{x^2}{12}=1$

d. Give parametric equations for the conic.

SOLN: $x = 2\sqrt{3} \tan t$, $y = -4 + 2 \sec t$