- 1. If the arclength  $t = \frac{25\pi}{4}$  is traced counterclockwise along the unit circle from (1,0) then
  - a. What is the reference number for *t*?
  - b. What are the coordinates of the terminal point P(x,y)?
  - c. Draw the unit circle and plot the terminal point P(x,y).
- 2. Use the unite circle shown at right to answer the following.
  - a. Locate the point  $\left(-\frac{3}{5}, \frac{4}{5}\right)$  on the circle.
  - b. Approximate the smallest positive value of t that will have the terminal point  $\left(-\frac{3}{5}, \frac{4}{5}\right)$ .
  - c. Locate the point on the circle in the first quadrant where  $x = \frac{24}{25}$ . What is the exact value of the *y* coordinate at that point?
  - d. Use the diagram at right to approximate to the nearest tenth two value of t so that  $sin(t) = \frac{7}{25}$ .
  - e. Approximate to the nearest tenth the interval for *t* in the first quadrant where  $\frac{7}{25} < \cos(t) < \frac{24}{25}$ .



3. Suppose that  $\sin(t) = \frac{\sqrt{15}}{4}$  and  $\cos(t) < 0$ . Find  $\cos(t)$ ,  $\tan(t)$ ,  $\sec(t)$ ,  $\csc(t)$  and  $\cot(t)$ . Don't bother to approximate.

- 4. Consider the function,  $y = 12 + 4 \sin\left(\frac{\pi}{180}(t 80)\right)$ .
  - a. Find the amplitude, period, phase shift and an equation for the line of equilibrium for this sinusoid.
  - b. Construct a table of values and a graph for one period of the function, clearly showing the positions of at least 5 key points.
- 5. Find an equation for the sinusoid whose graph is shown:



- 6. Consider the function  $f(x) = \sec(2x 1)$ .
  - a. Find the equations for three adjacent vertical asymptotes and sketch them in with dashed lines.
  - b. Find the *x*-coordinates where  $y = \pm 1$ .
  - c. Carefully construct a graph of the function showing how it passes through the points where y = -2, y = 2,  $y = \pm 1$  and how it approaches the vertical asymptotes.
- 7. Suppose  $\sin t = 2/3$  and t is in the first quadrant. Find the following:
  - a.  $\cos(t+\pi)$
  - b.  $\cos\left(t+\frac{\pi}{2}\right)$
  - c.  $\cos\left(\frac{\pi}{2}-t\right)$

## Math 5 – Trigonometry – Chapter 5 Test Solutions – fall '12

- 1. If the arclength  $t = \frac{25\pi}{4}$  is traced counterclockwise along the unit circle from (1,0) then
  - a. What is the reference number for t?

    ANS:  $\hat{t} = \frac{\pi}{4}$
  - b. What are the coordinates of the terminal point P(x,y)?

    ANS: Since  $t = \frac{25\pi}{4} = \frac{24\pi + \pi}{4} = 6\pi + \frac{\pi}{4}$  is three full rotations plus  $\frac{1}{8}$  turn to terminate at  $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
  - c. Draw the unit circle and plot the terminal point P(x,y). Find the coordinates of the terminal point P(x,y). ANS: Shown at right.



- 2. Use the unite circle shown at right to answer the following.
  - a. Locate the point  $\left(-\frac{3}{5}, \frac{4}{5}\right)$  on the circle. ANS: See diagram  $\rightarrow$
  - b. Approximate the smallest positive value of t that will have the terminal point  $\left(-\frac{3}{5}, \frac{4}{5}\right)$ .

ANS: This is evident in the diagram  $\approx 2.2$ 

c. Locate the point on the circle in the first quadrant where  $x = \frac{24}{25}$ . What is the exact value of the y coordinate at that point?

ANS: The equation for the circle is  $x^2 + y^2 =$ 

- 1. Plug in  $x = \frac{24}{25}$  & solve for y:  $\left(\frac{24}{25}\right)^2 + y^2 = 1$  $\Leftrightarrow y^2 = 1 - \frac{576}{625} = \frac{49}{625} \Leftarrow y = \frac{7}{25}$
- d. Use the diagram at right to approximate to the nearest tenth two value of t so that  $\sin(t) = \frac{7}{25}$ .



- ANS:  $\frac{7}{25} = 0.28$  where t could be about 0.3 or about  $\pi 0.3 \approx 2.8$  or 2.9
- e. Approximate to the nearest tenth the interval for t in the first quadrant where  $\frac{7}{25} < \cos(t) < \frac{24}{25}$ . ANS: Using the symmetry of  $\cos(t)$  and  $\sin(t)$  about the line y = x we see that  $\frac{7}{25} < \cos(t) < \frac{24}{25} \Leftrightarrow \cos^{-1}\frac{24}{25} < t < \cos^{-1}\frac{7}{25}$ . This means that, approximately, 0.3 < t < 1.3

3. Suppose that  $\sin(t) = \frac{\sqrt{15}}{4}$  and  $\cos(t) < 0$ . Find  $\cos(t)$ ,  $\tan(t)$ ,  $\sec(t)$ ,  $\csc(t)$  and  $\cot(t)$ . Don't bother to approximate.

ANS: 
$$\cos(t) = -\sqrt{1 - \frac{15}{16}} = -\sqrt{\frac{1}{16}} = -\frac{1}{4}$$
,  $\tan(t) = \frac{\sin(t)}{\cos(t)} = -\sqrt{15}$ ,  $\sec(t) = \frac{1}{\cos(t)} = -4$ ,  $\cot(t) = \frac{1}{\tan(t)} = -\frac{\sqrt{15}}{15}$  and  $\csc(t) = \frac{1}{\sin(t)} = \frac{4\sqrt{15}}{15}$ 

- 4. Consider the function,  $y = 12 + 4 \sin\left(\frac{\pi}{180}(t 80)\right)$ .
  - a. Find the amplitude, period, phase shift and an equation for the line of equilibrium for this sinusoid. ANS: The amplitude is 4. The period = 360. The phase shift = 80 and the equilibrium is y = 12.
    - b. Construct a table of values and a graph for one period of the function, clearly showing the positions of at least 5 key points.

| х | 80 | 170 | 260 | 350 | 440 |
|---|----|-----|-----|-----|-----|
| у | 12 | 16  | 12  | 8   | 12  |



5. Find an equation for the sinusoid whose graph is shown:



ANS: The line of equilibrium is  $\frac{-2+6}{2} = 2$  and the amplitude is 4. The period of oscillation is  $\pi$  and the phase shift is  $\frac{\pi}{8}$ , so the curve is described by the function  $y = 2 + 4 \sin\left(2x - \frac{\pi}{4}\right)$ .

6. Consider the function  $f(x) = \sec(2x - 1)$ .

a. Find the equations for three adjacent vertical asymptotes and sketch them in with dashed lines. SOLN: f(x) is undefined when  $\cos(2x-1)=0$ , leading to division by zero. This is true when  $2x-1=\pm\frac{\pi}{2} \Leftrightarrow x=\frac{1}{2}\pm\frac{\pi}{4}\approx 0.5\pm 0.785=-0.285$  or 1.285. Since the period of the function is  $\frac{2\pi}{2}=\pi$ , we can add  $\pi$  to  $\frac{1}{2}-\frac{\pi}{4}$  to get a third vertical asymptote at  $\frac{1}{2}+\frac{3\pi}{4}\approx 2.85$ . So, all together, the three adjacent vertical asymptotes are  $x=\frac{1}{2}-\frac{\pi}{4}\approx -0.3$ ,  $x=\frac{1}{2}+\frac{\pi}{4}\approx 1.3$  and  $x=\frac{1}{2}+\frac{3\pi}{4}\approx 2.9$ 

b. Find the *x*-coordinates where  $y = \pm 1$ .

ANS:  $\sec(2x-1) = 1 \Leftrightarrow \cos(2x-1) = 1$  which means that  $2x-1 = k\pi$ , some integer multiple of  $\pi$ . So,  $x = \frac{1}{2} + \frac{k\pi}{2}$ . For k = 0 and k = 1 we have  $x = \frac{1}{2}$  or  $x = \frac{1+\pi}{2} \approx 2.1$ 

c. Carefully construct a graph of the function showing how it passes through the points where y = -2,  $y = \pm 1$  and how it approaches the vertical asymptotes.

ANS:  $\sec(2x-1) = 2 \Leftrightarrow \cos(2x-1) = \frac{1}{2}$ , if  $2x-1 = \pm \frac{\pi}{3} \Leftrightarrow x = \frac{3\pm \pi}{6} \approx -0.02$  or 1.02 whereas  $\sec(2x-1) = -2 \Leftrightarrow \cos(2x-1) = -\frac{1}{2}$  if  $2x-1 = \pi \pm \frac{\pi}{3} \Leftrightarrow x = \frac{1+\pi}{2} \pm \frac{\pi}{6} \approx 1.5$  or 2.6 So our table of values might include

| x | $\frac{3-\pi}{6} \approx -0.02$ | $\frac{1}{2} = 0.5$ | $\frac{3+\pi}{6}\approx 1.02$ | $\frac{3+2\pi}{6}\approx 1.5$ | $\frac{1+\pi}{2}\approx 2.1$ | $\frac{3+4\pi}{6}\approx 2.6$ |
|---|---------------------------------|---------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|
| у | 2                               | 1                   | 2                             | -2                            | -1                           | -2                            |



7. Suppose  $\sin t = 2/3$  and t is in the first quadrant. Find the following:

a. 
$$\cos(t+\pi) = -\cos(t) = -\sqrt{1-\frac{4}{9}} = -\frac{\sqrt{5}}{3}$$

b. 
$$\cos\left(t + \frac{\pi}{2}\right) = -\sin t = -\frac{2}{3}$$

c. 
$$\cos\left(\frac{\pi}{2} - t\right) = \sin t = \frac{2}{3}$$