COMPUTERS &
CALCULATORS

Co-Edited by

Thomas M. Green Glenn D. Allinger
Contra Costa College and Montana State University
San Pablo, California 94806 Bozeman, Montana 59714

In this section readers are encouraged to share their experiences with computers and calculators as
they apply to the two-year college mathematics curriculum. There is special interest in innovative uses
of these tools to solve problems, to present concepts, and to define new directions for curriculum
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on submitting manuscripts.) Be sure to include with your paper a copy of the computer or calculator
program and a successful run and output.
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Programmable calculators can be used to play simulated baseball games. Student
access to programmable calculators and computer terminals, coupled with a famil-
iarity with baseball, provides an opportunity to enhance their understanding of the
binomial distribution in statistics. The use of random numbers to determine hits -
and outs introduces the student to the Monte Carlo method {1] in a familiar context.
For various hit probabilities, the average number of hits per game agrees well with
the expected values computed from the negative binomial distribution.

Our programmed baseball game proceeds by determining each batter’s perfor-
mance by comparing a random number with a given set of “hit probabilities” for
that batter. All batters on team X are assigned a common “probability of getting a
hit,” p,, and likewise with team Y.

A nine-inning game is played in the following manner: The first player of team X
comes to bat: a random number r is generated, such that 0 < r < 1.0. This number
is compared with four numbers H < T'< D < P, which represent thresholds for
home run, triple, double, and single base hit, respectively.
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Home Run: 0 <r< H
Triple: H<r<T
Double: T <r<D
Single : D <r<P,
Out: P . <r<10

If, for example, the next random number generated indicates the batter gets a
double (two-base hit), any runner at first base is advanced to third base, and the
batter to second. Runners score upon reaching home plate, and three “outs” retire
the sides, clearing all bases but retaining the accumulated score. The opposing team,
with its “hit probability,” p,, comes to bat. The same values of H, T, and D are used
for both teams. At the end of the nine innings, the game is over and the two scores
are compared. Extra innings are played in the event of a tied score after nine
innings. Other features of baseball—stolen bases, errors, walks, double plays, etc.,
could be introduced in a more sophisticated program, but this would complicate the
game analysis. The program used on the H.P. 9820 calculator is shown in the
appendix.

Distribution of ““Hits”. The standard binomial distribution describes the proba-
bility of obtaining X successes in N trials, given a “success” probability p per trial.
The sum of these probabilities from X =0 to X = N is 1.00 [2]. Calling a “hit” a
success, we are interested in the distribution of “number of hits per game,”
regardless of their being single-, double-, triple-base hits or home runs. Our case
differs from the standard distribution in two ways:

1. Tt is the total number of failures (“outs™) in a nine-inning game, rather than
trials (“at bats™), which is fixed.

2. The last batter on each team, by definition, can only strike out (or fly out or
ground out). Thus, in a nine-inning game there are only 26 of the 27 outs which are
freely distributable among the hits.

This situation is described by the “Negative Binomial Probability Distribu-
tion”[3] which gives the probability of getting & successes (hits) prior to the 27th
failure (out) in a nine-inning game:

26 + h)!
P(p.h) = 52—6,,,.—) (1= )7 (1

The sum of terms P(p, k), from h = zero to infinity, equals 1.00. In principle there is
no upper limit to the number of hits achievable by either team in a baseball game.
However, the probability of achieving many hits (e.g., & > 25), for p < 0.300, is
quite small. It is easy to construct a program which evaluates this sum over the
range & =0 to A = 25 for a fixed p. It is instructive for the student to include this
summation in a program designed to evaluate the expected value of A:

hmax

<hy = th- P(p,h). ()

Neglecting terms involving 4 > h_,, may be justified heuristically.
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Results. Six 50-game series were run, with p, fixed at 0.200, and p, varied from
0.200 in the first series to 0.300 in the final series. The multiple-base-'i:lit thresholds
were fixed at H = 0.04, T = 0.10, D = 0.20. For each series, the frequency, N, with
which team Y obtained hits was plotted against %; these histograms are shown in
Figure 1, along with the corresponding negative binomial distributions.

10 10
N

5 P, =0.200

0 () In il

o 10 A
10
N
P, =0.280
0

0 10 20 h 0 10 20 h

Figure 1. Histograms: Number of games N in which team Y gets 4 hits, for four 50-game series, with
various p,. Curves represent the corresponding negative binomial distributions, vertically scaled X 50.

As expected, increasing the hit probability from 0.200 to 0.300 shifts the peak to the
right. The mean values of 4 were found, using:

hrnax
k=3 h-N,/=N, 3)
h=0

and are presented (Table 1) with the corresponding values of (k> (from (2)); the
agreement is quite good. The final column depicts the data for a larger sample (350
games), with p, = 0.200.

Table 1. Expected values of the number of hits per game (k) from negative binomial
distribution, compared with mean values obtained in six 50-game series and one 350-game
series.

hit

probability p .200 220 .240 260 .280 .300 .200
number of

games 50 50 50 50 50 50 350
{MDpinom. 6.8 7.8 8.5 » 9.5 10.5 11.5 6.75
h, 6.5 7.6 9.1 9.8 9.9 11.7 6.76

exper.
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Extra-inning games have been included in the histograms (of hits per nine-inning
game) by dividing the total number of hits (for team Y) by the total “at bats” to
give the batting average for that game. The integral number of hits that would yield
a batting average, in a nine-inning game, closest to that value, was taken as the
appropriate number of hits.

Some game statistics are shown in Table 2, for a set of six 50-game series with p,
constant at 0.200, and p, ranging from 0.200 to 0.300. The range of values of p, is
larger than the spread of team batting averages within the American and National
Leagues (.248 to .279 as of this writing). The probabilities of extra-base hits are also
inflated. This was designed to yield higher-scoring games and to compensate for
absent elements (stolen bases, errors, walks, hit batters, etc.) which can contribute to
higher scores. The same procedure was carried out for the last column with realistic
major league values [4] for the extra-base-hit thresholds (see Table 2).

Table 2. Game statistics for six 50-game series, for various p, (columns 1-6). Extra-base-hit
thresholds are H = 0.04, T = 0.10, D = 0.20, producing multiple-base-hit probabilities:
(home run, 0.04), (triple, 0.06), (double, 0.10). Probability of single-base hit, Py, = (p-D).
A 50-game series between Oakland (p, =.248) and Detroit ( p, =.279) is shown in column 7,
with realistic threshold values: H = 0.023, T = 0.028, D = 0.066 for both teams.

Team X

P, 200 .200 .200 200 200 .200 248
number of

games won 29 28 20 16 15 14 17
total runs

scored 144 147 131 131 140 135 73
batting

average 188 .204 192 .196 198 187 242
Team Y

P, .200 220 .240 .260 .280 .300 279
number of :

games won 21 22 30 34 35 36 33
total runs

scored 136 150 171 177 217 229 110
batting

average .196 .206 243 242 274 .298 282
number of

extra

inning games 13 12 7 9 9 9 9
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Batting Averages and Runs Scored. Team batting averages (number of hits/
number of times at bat) are found to be rather close to the hit probabilities (Table
2), as one would expect for a fairly large sample. Baseball games are won, of course,
by the team with the most runs, not hits. However, fortuitous grouping of hits can
lead to runs. About one-seventh of all computer games were won by the team with
fewer hits.

An attempt to determine the expected number of runs in a nine-inning game,
directly from probability theory, would be quite difficult. One complicating factor is
that at the end of a half-inning (at the third “out”) runners may be (and frequently
are) left on bases. While it has been assumed here that the division of the game into
innings does not affect “hit” statistics, it seems certain to affect scoring statistics
(runs per team). Our Monte Carlo technique is well suited to explore the effect of
hit probability and multiple-base-hit thresholds on scoring.

The relationship between single-base-hit probability (p,-D) and runs scored per
game is explored as follows. The probablhtles of a home run, triple, and double
(H,T-H, and D-T, respectively) remain unchanged in each case, as p, (and
therefore py-D) is varied. For the data of Table 2 the mean number of runs per
game is plotted (Figure 2) against the probability of a single-base hit ( py-D) (curve
B). From data gathered from another set of six 50-game series, using higher
threshold values (H = 0.04, T = 0.10, D = 0.20), another graph is similarly plotted

5_
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Figure 2. Mean number of runs scored per game vs. single-base-hit probability (p,-D), with linear least
square fits. Two sets of data are plotted, for which the respective home run, triple, and two-base-hit
probabilities are: Curve A:0.04, 0.06, 0.10; Curve B: 0.04, 0.02, 0.09.
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(curve A). For simplicity, the data are fitted to straight lines (least square fits). A
least square program was used which calculates the y-intercept, slope, and the
uncertainty in the slope [5]; the values are shown in Table 3.

Table 3. Variation in single-base-hit probability (= inverse slope) corresponding to one run
per game. Data of Figure 2.

Threshold Values

Curve H T D Slope Inverse Slope
A .04 1 2 192+ 19 .052
B .04 .06 15 11.6 £ 0.9 .086

The significance of this calculation may be understood in terms of the team
manager’s dilemma: there are several key “long-ball” hitters on his team who
commonly hit doubles and triples but may be only fair fielders. The complete team
must include some excellent key fielders whose hitting probabilities may vary
inversely to their fielding abilities. He can improve his team defensively by sacrific-
ing single-base-hit probability. The inverse of the slope (Table 3, last column)
represents the amount of single-base-hit probability which, if added to the team,
will yield one additional run per game (on the average). Because of his superior
double and triple hitting, the manager of team A (curve A, Figure 2) need only
increase the team single-base-hit probability by 0.052 to yield one more (expected)
run per game. The team B manager (curve B, Figure 2) can add one additional
expected run per game by increasing the team single-base-hit probability by 0.086,
but only by sacrificing defensive ability.

It is known that baseball is amenable to statistical studies, and indeed may be the
most statistically analyzed of all sports. I have tried to show, in this article, that
baseball can serve as an interesting vehicle for an introduction to probability and
statistics. There is probably no upper limit, except that imposed by computer time
and cost, to the degree of sophistication that can be introduced into the program-
ming of game play and analysis.

Acknowledgment. The author is greatly indebted to Dr. Joseph Malkevitch for his critical comments
and suggestions.
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Appendix

Program for running a sequence of six series of ‘baseball games’, using the Hewlett-Packard desk
calculator (Model 9820 A). Each fifty-game series is ‘played’ with fixed values of p, and p,. The value of
P, is increased by 0.020 at the end of each series (step 28 in program), p, remaining fixed throughout the
sequence.

Step Instruction
0 prt “A PROB HIT =", R17
1 prt “B PROB HIT =", R18
2 1 + R22—->R22;0>R11->RI12->R13->R23>R24—>R25>R26
3 0->R1->R2->R3->R4->R5-5>R6—>R7—>R8>R9—>RI10;3->R0O
4 (R19 + m)**4—>R19; R19-int R19 >R 19
5 if flg 0; 1 + R24 >R24; R18>R8; goto +2
6 1+ R23—->R23; R17>R8
7 if R8 > R19; go to 30
8 RO -1->RO
9 if RO+ RO; go to 4
10 if flg 0; R4 + R5+ R6 + R7+ R12—>RI12; R13 + 1>R13;
clr flg 0: go to +2
11 R4 + R5+ R6+ R7+ RI1—>RI11; set flg0; goto 3
12 if RI3<8;goto3
13 if R13 =R12; setflg 1; goto 3
14 prt “GAME NO”, R22
15 prt “TEAM X RUNS =" R11
16 prt “TEAM Y RUNS =", R12
17 prt “TEAM X BATAV =", R25/R23; R25/R23 + R27
- R27
18 prt “TEAM Y BATAV =", R26 /R24; R26/R24 + R28
—>R28
Step Instruction
19 if flg 1: R29 + 1 > R29; clr flg 1
20 if R11 > R12; 1 + R20—> R20; go to +2
21 R21 + 1> R21
22 if R22 < 49; goto 2
23 prt “TEAM X WINS =7, R20; 0> R20
24 prt “TEAM Y WINS =", R21; 0—>R21
25 prt “XTRA INNING GAMES =", R29; 0—>R29
26 prt “TEAM X AVG OF AVGS =", R27/R22; 0—>R27
27 prt “TEAM Y AVG OF AVGS =", R28/R22; 0—>R28
28 0—>R22; R18 +.020—>R18
29 goto0
30 if flg 0; R26 + 1 > R26; go to +2
31 R25+ 1>R25
32 if R14 > R19; 4> R10; go to +4
33 if R15 > R19; 3—>R10; go to +3
34 if R16 > R19; 2—>R10; go to +2
35 1->RI10
36 ifR3>0;1+R4—>R4; R3—1->R3
37 if R2>0; 1 >R(R10+2); R2—-1->R2
38 if R1 >0; 1 >R(R10+ 1): R1 —1->R1
39 1->RRI10
40 0—>R10; goto 4
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