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Introduction 

Get a hammer. Seriously, get a hammer. As an experiment, hold the hammer in front 
of you with its head pointing up. Toss it upward (CAREFULLY!), end-over-end, and 
catch it after one revolution. The orientation of the hammer when you catch it will be 
the same as when you tossed it. 

As a second experiment, hold the hammer in front of you with its head pointing 
sideways, to the right. Toss the hammer upward, end-over-end, and catch it after one 

revolution. This time, the orientation changes?the head pointed to the right when you 
tossed it, but points to the left when you catch it! 

Figure 1 Hammer juggling and unstable rotation 

Many people suggest that this strange 1/2-twist in experiment #2 is due to the 

asymmetry of the hammer's mass distribution, but the same kind of thing will happen 
with a book, or wallet, or any object with three distinct dimensions. (Try it! Use a 

rubber-band to keep the wallet or book closed.) We don't always see a half-twist (that 
will depend on the particular orientation of the object when you release it), but we 

almost always see a twist. Why? The answer is well known to the physics community, 
but is documented primarily in their parlance. The following exposition explains this 

phenomenon from a mathematician's point of view. The governing equations will be 

quickly derived, and the supporting linear algebra will be explored. 
We assume that the reader has basic knowledge of multivariate calculus, and is 

aware that ei<t} = cos 0 + i sin (/>. We also assume that the reader is familiar with eigen 
values, eigenvectors, linear independence, and understands that a proper choice of ba 
sis will diagonalize a symmetric matrix M e R3x3. 
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The basics 

In this section we begin with simple definitions of basic vocabulary, cite of the gov 
erning equations of motion, and then proceed with the salient calculations. Proofs of 

important assertions, and a derivation of the equations of motion are postponed un 

til later sections so that we can focus on answering the question of why the hammer 

performs a half-revolution in Experiment #2 but not in Experiment #1. 

Vocabulary 

Angular Velocity Suppose an object is revolving about some particular axis, much 
like a child's spinning top. The angular velocity of the object, denoted by co, is a 
vector that points in the direction of that axis. The magnitude of co is 27ry, where 

y > 0 is the number of revolutions per second. As you might infer from the example 
of the spinning top, the angular velocity vector may change direction and length as 

time evolves. 

Newton's Second Law Most people cite Newton's Second Law as F = ma, which 

isn't quite right. Newton's Second Law says that force is the instantaneous change 
in momentum. In the case of linear force we write F = 

dp/dt where p ? mv is the 
linear momentum of a mass m traveling with velocity v. In the case of angular force 

and angular momentum we write r = 
dL/dt where r means torque and L denotes 

angular momentum (discussed in detail later). 

Euler's equation For reasons that will be explained later, the governing equation of 
motion is 

r = Mco + co x Moj, (1) 

where M e M?x3 is a symmetric matrix and co denotes the derivative of co with re 

spect to time. (This "dot notation" is used throughout the rest of the article to denote 
differentiation with respect to time.) In later sections we'll see that (1), called Euler's 

equation, is just a fancy restatement of the fact that r = 
dL/dt. 

Calculations Because the matrix M is symmetric, its eigenvalues are all real, and 

eigenvectors associated with distinct eigenvalues are orthogonal. In fact, it happens 
that all the eigenvalues of M are positive! In the case of the hammer, they're also 
distinct so we label them in increasing order: 0 < X\ < X2 < ?3. 

Physicists refer to M as the moment-of-inertia tensor, and they often use the letter 

/ (for "inertia") to denote this matrix. (We use M in this exposition to avoid confu 
sion with the identity matrix.) The eigenvalues of M are called the principal moments 

of inertia, and their corresponding unit-eigenvectors are called the principal axes of 

rotation. These unit-eigenvectors, which we'll denote by p\, p2, and p3 respectively, 

point along "the axes of" the object in question. For example, pull a textbook off of 
the shelf. It has length, width, and height. The vector p\ points in the direction of the 

length, the vector p2 points in the direction of the width, and the vector p3 points in the 
direction of the height (see the figure, below). Notice that, listed in the order prescribed 
by our indexing, the dimensions of the book are decreasing: length > width > height. 
If you accepted the earlier invitation to try the experiment with another object (with 
three distinct dimensions), you found that the rotation was unstable when the axis of 
rotation was parallel to p2, which corresponds to the "middle" dimension. This will 

always be the case, as we'll see in a moment. 
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AP3 

Vectors p\, p2, p3 form an orthonormal basis for M?, so any angular velocity can be 

expressed as a linear combination of them: = a\p\ + a2/?2 + a3P3- (Recall that 

may change with time, so the scalars a\, ot2 and ar3 are functions of time.) Moreover, 

the matrix M is diagonal in the basis {p\, p2, p3}. 

M = 
Ai 0 0 
0 A.2 0 

0 0 ?3 

So when the rotation is free from external torque and we use {p\, p2, p3} as our basis, 

equation (1) becomes 

ki?i + (?3 
- 

?2)a2a3 = 0 

A.2?2 + (A.1 
? 

A.3)?fi?f3 
= 0 

A.3?3 + (A.2 
- 

A.i)aia2 = 0 

(2) 
(3) 
(4) 

Suppose the object in question (the hammer, in this case) were to rotate about the 
axis p\. Then a2(0) = 0 = ?3(0) and it follows from equations (2)-(4) that a2 and a3 

stay zero. Of course, we see the same behavior whether we rotate about p\, p2 or p3. 

But rotating about one of the principal axes?exactly?is highly unlikely, even if we 
are meticulous in our efforts to make it happen. So what happens when the object in 

question rotates about an axis that is very close to one of the principal axes? 

Stable rotation Suppose co is initially very close to p\. Then a2(0) ^ ot3(0) 
s & 0, so the second summand on the right-hand side of (2) is order s2. 

A.i?i + (A3 
- 

k2)a3ct2 = 0. (5) 
(V) 

The analogous terms in (3) and (4) are only order e, so a linear approximation of 
Euler's equation is 

A-idi ^0 

k2?2 + (Ai 
? 

A.3)aitt3 = 0 

^3?3 + (^2 
? 

k\)oc\a2 = 0 

(6) 
(7) 
(8) 

Equation (6) indicates that ot\ is constant (or nearly so). This reduces the problem 
to a system of two equations in two unknowns. Solving (7) and (8) for ?2 and ?3, 
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respectively, gives us 

ft) 

0 
(A.1 

- 
k2)ai 

A.3 

(A3 
- 

A.))?) 

A.2 

0 ft) 
(9) 

which we write as the 2 x 2 system i = Ax. The eigenvalues of A are 

?i\ '(A.3-*i)(A.2-*,)?? 
A?A3 

which we will denote by ?/0. Suppose the associated eigenvectors are ax,a2 e C2. 

Then, since these vectors are linearly independent, there are scalars c\,c2 e C 

such that c\?\ + c2a2 = (a2(0), a3(0))r. Note that cx and c2 are "small" since 

||2i|| = 
||S2|| 

= 
\e?i(t)\ = 1 andof2(0) ^ 0 ^ or3(0). Now by defining x(t) = cxei(f)?ax + 

c2e~i(t>ta2 we have 

x(t) = 
jt (cxe^ax + c2e-i+ta2) 

= cx 
(j/**) 

2, + c2 
(?*~/0') 

32 

= 
cie/0?(/0)5i + c2e-i4>t (-i<?>)a2 

= 
cxei(t)tAax + c2?rI'0?Aa2 

= 
A(ci*/0'2i +C2^"/0i52) = Ajc(0 

The function x(t) solves (9) with the correct initial data so, since that solution is 

unique, x(t) = (a2(t), a3(t))T. It follows that a2 and a3 not only start small but stay 
small. That is, co stays close to axpx. 

In fact, co revolves around px as the system evolves. It's easy to follow through the 

same calculations to derive the same behavior when the axis of rotation is close to p3, 
but something very different happens when co is initially near p2. 

Unstable rotation If we begin with co very near to p2, ax (0) 

approximation of Euler's equation is 

Xx?x + (?3 
- 

X2)a2a3 = 0 

X2?2 ^ 0 

X3?3 + (X2 
- 

k\)a\a2 = 0. 

0 ^ of3(0), so a linear 

(10) 

(11) 

(12) 

Equation (11) indicates that a2 is constant (or nearly so). This reduces the problem to 
a system of two equations and two unknowns. 

03/ 

0 

(Xx 
- 

X2)a2 

(X2 
- 

X3)a2 

0 ft) 
(13) 

The coefficient matrix has eigenvalues 

'(A.2 X3)(A.i 
- 

A.2)or| 
Ai ? 1^3 

which we denote by ?0. Suppose the associated eigenvectors are ax,a2 e R2. Then 
the solution to (13) is x = 

cxe(^tax + c^'^a^ where cx and c2 are chosen to achieve 

x(0) = (ax (0), a3(0))T. It's important to note that c2e~^a2 vanishes quickly but that 
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c\e^a\ grows exponentially. That is, though ot\ and a3 started small, they don't stay 
that way, and it's exactly this instability that makes the hammer change its orientation. 

Rolling up our sleeves 

Now we undertake the task of supporting the assertions made about the matrix M (that 
it's symmetric and that all its eigenvalues are positive) and explaining Euler's equation. 

We begin by defining angular momentum and establishing its relationship to angular 

velocity. 

The relationship between L and u) Suppose a rigid body rotates about the line 

through its center-of-gravity defined by the vector co. Taking the center-of-gravity as 

our origin, an atom at r? 
= 

(xj, y7, Zj) has a linear velocity of Vj 
= co x r, (see Figure 

2). The angular momentum of that atom is defined to be Lj 
= 

r? x rrijVj, where ray is 

its mass. That is, Lj 
= 

mj(rj x (co x r7)). Grinding through the cross products brings 
us to 

Lj 
= 

mj(y] 
+ z2j) -mjxjyj -mjXjZj 

-mjXjyj mj(xj 
+ z2j) -mjyjZj 

-rrijXjZj -mjyjZj ntj(x2 + y2) 

COy 
CO, 

(14) 

Lj=rjXVj 

Vj= COX 7} 

Figure 2 Angular velocity and angular momentum 

The angular momentum of the entire object is just the sum of the angular momenta of 

all its atoms. Summing (14) over all particles gives us 

' 

J2j mj(yj + z2) 
- 

J2j mjXjyj 
- 

?,. mjXjZj 

- 
J2j mjXjyj J2j mj(x2 + z2) 

- 
J2j mjyjZj 

-Y,jmJxjZj ~Y.jmjyjZj T.jmj(xj + yj)j 
This is the matrix M 

Defining M to be the coefficient matrix on the right-hand side, we can write L = Mco. 

We remark that the symmetry of M is now apparent, but why are its eigenvalues always 
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positive and why does it play a role in Euler's equation? These questions are answered 
in the remaining sections. 

The eigenvalues of M We begin our investigation into the eigenvalues of M by writ 

ing 

M = 
(\\x\\?+\\y\\z+\\z\\z)I-AlA, (15) 

where Xj 
= 

y/m] xj, y and z are the corresponding vectors of scaled y and z coordi 

nates, and A is the matrix whose columns are A.\ 
= x, A.2 

= 
y, and A3 

= z. That is, 

M is a perturbation of the matrix (\\x||2 + \\y ||2 + ||z||2)/, which has a single eigen 
value whose algebraic multiplicity is three. The effect of this perturbation on the set 
of eigenvalues depends on the "size" of the perturbation. We measure the "size" of a 

linear function C : M? ?> M3 with the operator norm: 

def 
|?||* = max \\Cu\ 

IWI=1 
(16) 

where ||v|| = 
y/v v is the standard norm M3. (The fact that a maximum is always 

achieved follows from the Heine-Borel Theorem, which is usually taught in a course 

such as Real Analysis. Its 1-dimensional version is known to calculus students as the 
Extreme Value Theorem: A continuous function on a closed interval achieves an ab 

solute maximum value.) Before continuing, we suggest that the reader verify the fol 

lowing lemma. 

are linear operators. Then Lemma 1. Suppose A, B : M? ? 

1. \\Ax\\ < ||A|U|*|| 
2. \\AB\U< ||A|U|?|U 
3. ||A|U = ||A7'|U 

Now let us suppose that u is a unit-eigenvector of M associated with the eigenvalue 
X. Then 

Xu = Mu = 
((\\x\\2 + \\y\\2 + \\z\\2)I 

- 
ATA) u 

from which it follows that ATAu = 
(\\x\\2 + \\y\\2 + ||z||2 

- 
X) 

u. That is, u is an 

eigenvector of AT A. The strategy of our proof is to use this fact to show that 

mi2 + iiHii2)-? 
anchor value > 0 

distance from ? to anchor value 

< imi2 + imi2 + iiHii2, 

from which it follows that X > 0. For example, if it was the case that ||3c||2 + \\y \\2 + 

||z||2 = 5, showing |5 
? 

X\ < 5 would imply that X > 0. 
Since || m || = 1, we have 

l?l|2 2l|2 jcir + iiyir + iizir-* (ll*ll2 + H5Hl2 + llzH2-A.)ii 

= \\ATAu\\ < \\ATA\U 
< HAr|U||A| \T?2 (17) 
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so the proof rests on our estimate of || AT ||*. For any unit vector, v, 

\\ATv\\ 
= 

y/(x v)2 + (y 
- 
v)2 + (z v)2 

^Vll^lP + lljlP + llHll2. (18) 

Note that equality could only occur in (18) if some unit vector v were parallel (or 

antiparallel) to all three vectors, x, y and z. But this could only happen if the object in 

question were 1-dimensional! Restricting ourselves to 3-dimensional objects, we can 

rewrite (18) as 

l|Ari;|| < yi|i||2+||?ll2+llHll2. (19) 

Since (19) is true for all unit vectors v, it's true when ||Art>|| achieves its maximum 

and, thus, ||Ar|U < Vll^ll2 + ll?ll2+ Il2||2- Returning to (17), we have 

| ll*ll2 + \\y\\2 + IIHII2 
- 

*| 
< \\AT\\l < ||x||2 + ||y||2 4- llzll2, 

from which it follows that X e (0, 2(||jt||2 + \\y\\2 + ||H||2)]. That is, the eigenvalues of 

M are positive. 

Euler's equation (explained) The final piece of the puzzle is Euler's equation 
which, earlier, we asserted was just a fancy way of saying that torque changes angular 
momentum. When we first introduced the idea of torque we wrote 

dL 
r = _. (20) 

Equation (20) is correct from the point of view of an observer who is removed from the 

application of torque and the resulting change in motion?physicists say that such a 

person is in an inertial frame. But we're not dealing with an inertial frame because our 

coordinate system, {px, p2, p3}, depends on M, which depends on the object which is 

rotating. As the object rotates, so does our basis! 

How do we write (20) from our point of view, at the center of the rotating body, 
with a basis that's rotating? The key is to imagine what an observer in an inertial 

frame would see if, from our point of view in the rotating basis, we saw no change in 

the angular momentum. Because our frame of reference is spinning, our observation 

that L appears to be constant means that L is spinning about the axis of revolution at 

exactly the same speed as the basis. So an observer in an inertial frame would record 

the change in angular momentum as co x L (see Figure 3). Using the subscript of 0 to 

denote the inertial frame and the subscript r to denote the rotating frame, this thought 

experiement allows us to write (20) from our point of view in the rotating frame: 

\dt)0 V ) + co x Lr . (21) 

is spinning 

Finally, we use the fact that Lr = Mco. Notice that M depends on the physical charac 

teristics of the object but not on time, so we can rewrite (21) as 

r = Meo + COX Mco, (22) 

which is Euler's equation. 
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?>xL 

Figure 3 Change of L in an inertial frame 

Conclusion 

The last implicit supposition in our analysis was that the eigenvalues were distinct. 

This, at least, is not always true. What would happen if two of the eigenvalues were 

the same? What if all three were the same? What would that imply about the rotating 
object? 

Acknowledgments. The author would like to thank Drs. Scott Franklin and George Thurston of RTFs Depart 
ment of Physics for their time and conversation regarding this article. 

REFERENCES 

1. C.H. Edwards & D.E. Penney, Elementary Differential Equations, 5e, Prentice Hall, Upper Saddle River, NJ, 
2004. 

2. D.C. Lay, Linear Algebra and Its Applications, 3e, Addison Wesley, Boston, 2003. 

3. D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics, 6e, John Wiley & Sons, Inc., 2001. 

Proof Without Words: Sum of a Geometric Series via Equal Base Angles 
in Isosceles Triangles 

2a, 

-I 'WA/ 

a a ? a 
? + 

- 
+ 

- 
+ ...= 

> 
? = 2a 

9 A ?-*( On 2 4 
n=0 
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