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Problem B1 on the 2002 Putnam competition [1] reads as follows:

PUTNAM PROBLEM (PP): Shanille O’Keal shoots free throws on a basketball
court. She hits the first, misses the second, and thereafter the probability that she
hits the next shot is equal to the proportion of the shots she has hit so far. What
is the probability that she hits exactly 50 out of her first 100 shots?

The answer is 1/99, as the reader may enjoy showing. Indeed, the probability that
Shanille hits k of her next 98 shots is 1/99 for all k with 0 < k < 98; we will prove
this later as a corollary to a more general result.

The fact that the number of later hits is uniformly distributed on {0, 1, ..., 98} may
seem unexpected, but it reflects the fact that the starting conditions—one hit and one
miss—convey very little information. In Bayesian jargon, as we will see, these starting
conditions would be called noninformative, not because they convey no information
whatever but because they lead to a uniform distribution on the outcome space.

Let’s generalize the problem slightly. Suppose Shanille begins with a hits and b
misses, and then takes n additional shots. We will consider two associated random
variables:

S, := the number of successes among n attempts;
S, +a
Tatbtn
We can think of 6, as an “updated belief” in Shanille’s shooting ability based on
all accumulated data. In the Putnam problem (PP) we have a = b = 1 and we seek

P(Sog = 49), the probability of exactly 49 hits among the next 98 shots. (We will write
P(X = k) for the probability that the discrete random variable X has value k.)

n

GENERALIZED PUTNAM PROBLEM (GPP): Shanille shoots free throws. To be-
gin, she hits a and misses b shots; thereafter, she hits with probability equal to
the proportion of hits so far. Determine the probability distribution of S,. Equiv-
alently, describe the distribution of 6,.

As noted above, S, is uniformly distributed on {0, 1, ...,n} fora = b = 1. We will
soon see that S, is not uniformly distributed for any other choice of a and b.

The GPP is a probability problem—at each stage the success probability 6 is fixed—
but its ingredients suggest the Bayesian approach to statistics:

* an initial belief (a prior distribution, in Bayesian jargon) about Shanille’s shooting
accuracy: 0 = a/(a + b) = hits/(hits + misses);

* data: the outcome of one or more shots;

* an updated (posterior) belief, based on the data, about Shanille’s accuracy.
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After solving the GPP we will propose and solve a Bayesian variant of the basket-
ball problem, in which the GPP can be seen as “embedded.” En route, we introduce
Bayesian statistics in general and the beta—binomial model in particular. The Bayesian
perspective can help explain some surprises in the GPP’s solution.

Bayesian statistics: a primer

To put what follows in context, we note some differences between probability and
statistics. Both disciplines deal with parameters (such as 6, the success probability in
some experiment) and data or random variables (such as S, in the GPP). A proba-
bilist usually takes parameters as known, and studies properties of the data or random
variables, such as their distribution and expected values. Statisticians study the inverse
problem: Beginning from data, they try to describe parameters.

The difference between the Bayesian statistician and the (more common) Frequen-
tist statistician centers mainly on how each views the roles of parameters and data. A
Frequentist views parameters as fixed but unknown quantities, and the data as random.
Inferences, such as those concerning confidence intervals for parameters, are obtained
through thought experiments starting with “Imagine all possible data produced by the
parameter” or “If we sampled arbitrarily often ....”

Consider, for instance, a Frequentist method, the one-sample ¢-test for estimating
a population mean 6. Suppose that X, X5, ..., X, is an independent, identically dis-
tributed sequence of random variables and let X = 1 3"" | X;. The distribution of the
X; may not be known exactly, but some assumptions are made, such as that the distri-
bution is approximately normal and that the X; have finite mean and variance.

Given specific data xi, x,, ..., x, and their sample mean x, one obtains a specific
95% confidence interval (x — m, X + m), with X a point estimate for 6. (The value
m is the margin of error and is determined from the variability observed in the data.)
Notice that, from the Frequentist perspective, 95% is not the probability that 6 lies
in the calculated interval. On the contrary, 6 is fixed while the confidence interval is
random. The 95% probability concerns “coverage”: If one samples often, each time
calculating a confidence interval, then about 95% of these intervals will contain 6.

A Bayesian, by contrast, sees the data as fixed, but expresses belief about a pa-
rameter 6 as a probability distribution—subject to change as additional data arise. A
Bayesian would concede that in some simple cases 6 has a “true” value. If, say, 6 is
a coin’s probability of landing “heads,” then (according to the law of large numbers)
one could approximate 6 by flipping the coin many times. But in less repeatable cases,
such as whether it will rain tomorrow, a Bayesian would rather model our belief (or
uncertainty) about this likelihood.

Consider, for instance, how a Bayesian makes an inference about a population pa-
rameter, 6, contained in a parameter space €2. The Bayesian starts with a prior distri-
bution 7 (6), which expresses an initial belief about the relative likelihood of possible
values of 6. The data X = X, X», ..., X, and their joint distribution f(X =x | 6)
are known. To obtain the distribution of 8 conditioned on X (called the posterior dis-
tribution and denoted by f (0 | X = x)), a Bayesian invokes Bayes’s rule:

fX=x]|0)r(0)
fo fX=x|6)n@)db’

fO1X=x)= ¢y

where €2 is the parameter space for 6. (The integral is a sum if 6 is a discrete random
variable.) In simple cases (1) can be evaluated in closed form; other cases require nu-
merical methods, such as Markov Chain Monte Carlo (MCMC) techniques. A variety
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of sources discuss Bayesian methods in general [3, 4, 5, 6] and MCMC techniques in
particular [2, 4, 5].

Knowledge of f(6 | X = x) amounts, from a statistical perspective, to knowing
“everything” about 6. For example, a Bayesian might use the expectation E(6 | X = x)
as a point estimate of 6. A 95% confidence interval for 6 could be any interval (6, 6,)
for which

6
/2f(9|X=x)d0=0.95. @)

6

Among all such intervals, one might choose the one symmetric about the expected
value E(8 | X = x), or, alternatively, the narrowest interval for which (2) holds. In
any event, (2) expresses the Bayesian’s belief that 6 lies in the confidence interval
with 95% probability. Thus, Bayesians and Frequentists agree that a 95% confidence
interval depends on the data, but a Bayesian expresses the dependence explicitly, using
the posterior distribution.

Bayesians v. Frequentists Where do Bayesians and Frequentists disagree? Follow-
ing is a somewhat caricatured discussion; in practice, many statisticians adopt aspects
of both approaches.

Frequentists see the Bayesian notion of a prior distribution as too subjective.
Bayesians counter that Frequentists make equally subjective assumptions, such as that
a given distribution is normal. Frequentists claim that Bayesians can, by choosing a
suitable prior, obtain any desired result. Not so, Bayesians reply: Sufficient data always
“overwhelm the prior”; besides, ill-chosen priors are soon revealed as such. Frequen-
tists appreciate the computational tractability of their methods, and see Bayesian
posterior distributions as unduly complex. Not any more, say Bayesians—modern
computers and algorithms make posterior distributions entirely manageable.

Bayesian inference the beta—binomial way

We illustrate Bayesian inference using the beta—binomial model (which we apply later
to a Bayesian-flavored basketball problem). Suppose X is a Bernoulli random variable
with values 0 or 1 and P(X = 1) = 0; we write this as X ~ Bernoulli(#). For fixed n,
let X,, X, ..., X, be independent Bernoulli random variables and set Y = X; + X, +
.-+ + X,,. Then Y is the number of successes (1s) in n Bernoulli trials, a Binomial
random variable, and we write Y ~ Binomial(n, ).

As a prior distribution on 6 Bayesians often choose a Beta(a, b) distribution on
[0, 1]. This distribution is defined for arbitrary positive a and b, and has density

['(a+b)

a=1/1 _ pyb—1.
F(a)F(b)e (=67

Jap(0) =
we write 6 ~ Beta(a, b). (The gamma function is defined for x > 0 by
[o¢]
I'(x) = f e dt.
0
Among its familiar properties are I'(x) = (x — )I'(x — 1) and I'(1) = 1. In particu-

lar, I'(n) = (n — 1)! for positive integers x. It is an interesting exercise to show directly
that [} f.50)d6 = 1.)
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FIGURE 1 shows Beta(a, b) densities f, ;(6) for several choices of a and b. Notice
how the parameters control the shape of the distribution. Straightforward calculations
give the expectation and variance for 6 ~ Beta(a, b):

Var(0) =

E6) = —— ab 3)

+b’ (@a+bPa+b+1)
These formulas suggest that a and b can be thought of as imagined prior hits and misses
among n = a + b attempts. Indeed, suppose that a, b are actual hits and misses from
a Binomial(a + b, #) distribution. Then the Frequentist’s (unbiased) estimate of 6,

a

6= ,
a+b

is precisely the Bayesian’s expected value of . Similarly,

6(1-6)  ab
a+b  (@+b)?

which is (@ + b + 1)/(a + b) times the Bayesian’s Var(9).

Var (A) =

a=7,b=2

a=2,b=5
2.5 1

)] a=3,b=3

1.5

0.5 1

0 0.2 0.4 0.6 0.8 1
9

Figure 1  Plots of £, ;,(9) for different values of a, b

Notice also that one can arrange any positive mean and variance by choosing a and
b judiciously in (3). For example, setting a = 7 and b = 2 in (3) reflects Bayesian
belief in a mean near 7/9; see FIGURE 1. Setting a = b = 1 produces the uniform
distribution on [0, 1], known here as the noninformative prior because it reflects little
or no prior belief about 6.

The following well-known result links the beta and the binomial distributions in the
Bayesian setting.

PROPOSITION 1. Suppose that 6 ~ Beta(a, b) and X ~ Binomial(n, ), so the
prior distribution has density function

_T(a+b)

a—171 _ pyb—1
_l"(a)F(b)O 1-0)

m(0)
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and

PX=k|0)= (Z) 6F(1 —0)"*.
Then 0 has posterior distribution Beta(a + k, b + n — k). That is,
r b
f (9 | X = k) = (a +0+ I’l) 9a+k—1(1 _ 9)b+n—k—1.

T@t (b +n—k

Note Proposition 1 and equation (3) imply that the posterior expectation E(6) satis-
fies

a+k _a+b a + n k
a+b+n a+b+n a+b a+b+n n

Thus, E(0) is a convex combination of the prior mean a/(a + b) and the sample mean
k/n; the Bayesian method favors the prior for small samples but tends toward the
Frequentist figure as the sample size increases.

E@®) =

Proof. Bayes’s rule (1) gives

n n— F(a b) a— -
(k)ek(l - 0) ¢ r(a)Jl:(b) o 1(1 - e)b :

fol (Z)ék(l _ é)n—k lf(s;wl:?b)) éa—l(l _ é)b—l 4o’

fOX=k=

Canceling common factors and collecting powers of 6 and (1 — 6) gives
f (0 | X = k) = C@‘H‘k_l(l _ 9)b+n—k—1

for some constant C. Since f(6 | X = k) is a probability density, it must be
Beta(a + k,b +n — k). [ |

The beta-binomial model’s main ingredients resemble those of the GPP:

* a prior distribution: 6 ~ Beta(a, b), with E(9) = a/(a + b);
* data: X ~ Binomial(n, 6);
* a posterior distribution: 6 ~ Beta(a + k, b + n — k) with

a+k

Epost(0) = ——.
post() a+b+tn

The analogy continues. For the GPP, the initial success probability has the fixed value
6y = a/(a + b); for the beta-binomial, 6, is random, but E(6y) = a/(a + b). After
n shots with k successes, the GPP gives 6, = (a + k)/(a + b + n), which is also the
expected value of 6, after a beta-binomial update. A similar theme will be seen in what
follows.

Repeated updates Repeated beta—binomial updates turn out to be equivalent to a
single beta—binomial update. More precisely, let n; and n, be positive integers and a
and b fixed positive numbers, with 6 ~ Beta(a, b) and k; ~ Binomial(n, 8). Updat-
ing 0 once gives 6 ~ Beta(a + ki, b + n; — k). If k, ~ Binomial(n,, 6,), then updat-
ing 0 again gives

6 ~ Beta(a + (ki + ko), b+ (1 +n2) — (ky + k),

which shows that 6 can be obtained from one beta~binomial update with k; + &, suc-
cesses in n; 4 n, trials. This result plays well with Bayesian philosophy: The data
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and the model—not an arbitrary subdivision into two parts—determine our posterior
belief.

If n = 1, the binomial random variable reduces to the Bernoulli case; the result
might be called a beta—Bernoulli model. The preceding observation implies that up-
dating a Beta(a, b) prior distribution with a sequence of beta-Bernoulli updates is
equivalent to a single beta-binomial update.

Bayesian prediction Our goal so far has been to combine a prior distribution with
data to predict future values of a parameter 6. A natural next step is to use our new
knowledge of 6 to predict future values of the random variable X. If 6 were fixed we
would obtain the traditional binomial distribution:

P(X = k) = (Z)Gk(l — gyt

Because our 9 is random, we average over all values of 6, weighted by its posterior
density. Not surprisingly, the randomness of 6 leads to greater variability in X. With
6 ~ Beta(a, b), we have

1
P(X = k) = / P(X =k | 6) ,,(6) d6
0

_ L(n k aLa+b) b—1
_/o (k)ea—e) rare’ (704

1
L

_ (n) Fa+b) T(a+k)Tb+n—k)
“\k)T@r®) T@+b+n)

“4)

This result is called the marginal distribution of X, or, in Bayesian parlance, the pre-
dictive posterior distribution.

The distribution (4), known as the diffuse binomial, is close kin to the ordinary bi-
nomial distribution. FIGURE 2 suggests how: Both distributions have the same general

0101 . . « Binomial

0.08 1 .

0.061

0.04 - . H K .

0.02 - Diffuse Binomial _+ " ) .o

0.00-o.....n:I:.:-' ' . .:::““
20 30 20 3 -

Figure 2 Distributions of P(X = k) for the diffuse binomial with n = 60, a= 25, b = 10;

and for Binomial(60, 6) with 6 = 25/35
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shape but the diffuse version has larger “tails.” Equation (4) has more than passing
interest—it will reappear when we solve the GPP.

Like the updating process, the predictive posterior distribution does not depend on
a partitioning of n. To see this, suppose that 6, ~ Beta(a, b), X; ~ Binomial(n,, 6,),
6, ~ Beta(a + ki, b + ny — X;), and X, ~ Binomial(n,, 6,).

If X =X,+ X,,n=n;+ny,and k = k| + k,, then we have

ny ny
PX =k) = Z Z P (X, =k and X, = ky)
k1=0 ky=k—k;

na

=), ). PXa=h|Xi=k)PX = k).

k=0 ky=k—k,

Substituting (4) in both factors above gives P(X = k) =

h <n2> T(a+b+ny)

&G o) T+ k)b +ny — k)

o [(a+k + k)b + (n) +n2) — (ki — k2))
l"(a + b + (n1 + nz))
(nl) F(a+b) F(a+k|)l"(b+n1 —kl)
ki) T () (a+b) T(a+b+n)
_Ta+b) Ta+krb+n—k) oL & (nz)(nl)
~ T@T®) T(a+b+n) ,(IZ:O,Q;M ko) \ky

_T@+b)T@a+kI'(b+n—k) <n>
T T(@r®) I'(a+b+n) k)

Thus, an imagined partitioning of the attempts does not—and to a Bayesian should
not—change the predicted outcome.

No free lunch One might also ask about the marginal posterior distribution of 6,
found by averaging over all possible outcomes of X. To a Bayesian this exercise is
fruitless: Imagining all possible outcomes should not change the initial belief about 6.
The following calculation explains this for 6 a continuous and X a discrete random
variable. (The same result holds for any combination of discrete and continuous ran-
dom variables.)

Consider a continuous random variable 6, with prior density 7 (6) and values in €2,
and suppose that a discrete random variable X, with values x in a set S, has conditional
density P(X = x | 8). Then, for each x, the conditional posterior distribution for 6 has
density

_ PX=x|0)n()
~ [,P(X =x|6)n@)db

fpost(e | X =x)

Now we can find the marginal posterior distribution:
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Frost®) =Y fron(6 | X = x) P(X =)

x€eS
_y PX=x] 070
TS [ P(X =x | D) (B)db

P(X =x)

PX=x)=n(®)) P(X=x|0)=nr().

x€S

3 Z P(X =x | 0)7(h)
B P(X = x)

xe§

That the prior and the marginal posterior distributions for 6 are identical illustrates a
Bayesian “no free lunch” principle: Real data, not thought experiments, are needed to
update a prior distribution.

Bayesian basketball Yet again the tireless Shanille shoots free throws and we seek
to model our belief about her success probability 6. As cautious Bayesians we choose
for 6 the “noninformative prior’—the uniform distribution on [0, 1]. Lacking further
information, we see every subinterval of [0, 1] of width Af as equally likely to contain
the “true” 6. A more informed Bayesian fan might choose an informative prior, say,
Beta(4, 4). FIGURE 3 shows both choices.

1.5

0.5

0 0.2 0.4 0.6 0.8 1
9

Figure 3 The Beta(1, 1) (uniform, noninformative) and Beta(4, 4) priors for 8, Shanille’s
success probability

Here, unlike in the GPP, we never know Shanille’s exact success probability. (If we
knew 6 exactly we wouldn’t bother to estimate it!) If Shanille shoots 7 free throws and
hits &, then, using the beta—binomial model and invoking Proposition 1, we obtain the
following posterior distributions for 8:

k+1
for prior Beta(1, 1):  Beta(l +k, 1 +n —k), with E,.(6) = —__::—2
n
. . k+4
for prior Beta(4,4): Beta(4 +k,4 +n — k), with E.(0) = —n
n

In each case a 95% confidence interval (u, v) for 6 can be obtained by finding (perhaps
numerically) any numbers u and v for which
F'(n+a+b)

Ue)“—”" 1 — )% 4o = 0.95.
rk+a)l'(n—k+>b) J, ( )
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The following table compares the Frequentist (in this case binomial) and two different
Bayesian point estimates and symmetric 95% confidence intervals for 6 using different
values for n and k.

TABLE 1: Frequentist and Bayesian estimates for 6

Model (k, n) Point estimate ~ 95% confidence  Interval width
Frequentist 2,3) 2/3 ~ .667 (.125, .982) .857
(30, 45) 30/45 ~ .667 (.509, .796) 287
(60, 90) 60/90 =~ .667 (.559, .760) 201
Bayesian,a = 1,b =1 2,3) 3/5 = .600 (.235, .964) 729
(30, 45) 31/47 ~ .660 (.527,.793) .266
(60, 90) 61/82 ~ .663 (.567, .759) 191
Bayesian,a = 4,b =4 (2,3) 6/11 ~ .545 (.270, .820) .550
(30, 45) 34/54 ~ .642 (.514, .769) 254
(60, 90) 64/98 ~ .653 (.560, .747) 187
Observe:

* The Frequentist point estimate for 6 is always 2/3, the sample proportion of suc-
cesses. Bayesian point estimates, by contrast, are weighted averages of the sample
proportions and the prior mean, 1/2.

* For fixed k and n, widths of 95% confidence intervals decrease as we move from
the Frequentist through the noninformative Bayesian to the informative Bayesian
perspective.

* The Frequentist and Bayesian estimates come together as n increases. “Data over-
whelm the prior,” a Bayesian might say.

* For the informative prior Beta(4, 4), FIGURE 4 shows the densities for 0 becoming
narrower and moving toward the sample mean as n increases.

8]

0 0.2 0.4 0.6 0.8 1
6

Figure 4 An informative prior (Beta(4, 4), dashed) and several posterior densities for 6
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Solving the GPP

Leaving (for now) the realm of statistics, we now return to probability and the GPP.
We asserted above without proof that in the original PP (with a = b = 1), the random
variable S, is uniformly distributed:

1
P(Sn=k)='n_*_—1 fork:O,l,...,n.

Instead of proving this directly, we calculate P(S, = k) for arbitrary positive integers
a and b. This takes a little work, but as a small reward we see the beta—binomial
predictive posterior distribution (4) crop up again. We see, too, that (5) reduces to the
uniform distribution if, but only if,a = b = 1.

PROPOSITION 2. With notation as in the GPP, we have

. _(m\T@+b) T@@a+kT'(b+n—k)
PSh =k = (k) T@r®)  Tatbtn

®)

Proof. There are (Z) ways to achieve k successes in n attempts. The key observation
is that all sequences of k successes and n — k failures are equally probable. To see why,
consider any point at which s successes and f failures have occurred. The probability

of a success followed by a failure is thus

5 f
s+fs+f+1

while the probability of a failure followed by a success is

f s
s+fs+f+1

Because these two quantities are equal we can rearrange any sequence of successes
and failures so that (say) all k successes come first. The probability of this special
arrangement is

aa@+1)---(a+k-1Dbb+1)---(b+n—-k—-1)
(a@a+b)a+b+1)---(a+b+n-1
Fla+b) Ta+k)'(b+n—k)
“T@r®) Ta+b+n)

where the equality follows by rewriting the right side in terms of factorials. Finally, the
probability of any k successes among n attempts is (;‘) times the preceding quantity.
|

Back to the Beta Now we can start to explain why formulas (4) and (5) are identical.
FIGURE 5 shows probability distributions of 8¢y (Shanille’s success rate on her 100th
shot) for several choices of a and b.

The plots in FIGURE 5 closely resemble the corresponding beta density functions
fa.p in FIGURE 1; they differ mainly by a vertical scale factor of a + b + n. We can
describe this graphical similarity in probabilistic language. Let I be any interval con-
tained in [0, 1] and 6 ~ Beta(a, b). We will show that
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0.025+
0.02+
0.015j
0.011

0.0051

o]

Figure 5 Density for plots of 6199 for different values of a and b; compare to FIGURE 1

[P, € 1)~ PO € I)| = O(1/n), ©6)

which means that if we start with a hits and b misses, then for large n the discrete
probability distribution for 6, is approximated by the continuous Beta(a, b) distribu-
tion.
To prove equation (6) is a routine but slightly messy exercise in O-arithmetic. First,
let
a+k

= — d P,.=P6,=1t,
a+b+n an k ( )

tn,k

fork =0,1,2,...,n. Equation (6) will follow if we show that
fap(tai) =@+ b+n) Py + O(1/n) (M
uniformly in k. Because f; ;(t, ) and P, ; have the common factor

['(a +b)
C'@r®)’

to prove (7) it will suffice to show that

Dn,k = (a+b+n)<n> F(a+k)r(b+n_k) _

a—1 b—1
=t 1-1¢, 0O(1/n),
k Ta+b+n) n.k ( ) +O0(1/n)

uniformly in k. Writing out D, ; in terms of factorials gives

D,y=(@+b+n)
. @a+k—D@+k-2)---k+1)b+n—-k-Hb+n—-k—-2)---(n—k+1)
@a+b+n—1D@+b+n-2)---n+1) '

Note that both numerator and denominator have a 4+ b — 1 factors. Dividing all factors
by N =a + b+ n and substituting t,, = (@ +k)/N and 1 —t,, = (b +n —k)/N
now gives
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(=) (o= )t =5 (== ) (=t 2) (1= t0a )

(-5 -3 (- =)

(tui + O/ (1 = tyi + O(1/m))""
(1+ 0(1/n))*!

=1 (1= 1,0)"" + 0(1/n) = Dy,

as desired. (The assiduous reader is invited to verify the O-arithmetic in the last step.)

Next we use (7) to prove (6). To begin, write I = [«, B], fix n, and suppose that /
contains the 1, , ranging from #, x, to t,x,,, where 0 < ko < ky < n. Now the continu-
ity of f,, on [0, 1] implies that

B In,
PO el) = / fap@®)dt = / “ fap@®)dt + 0(1/n).
02 t”'kO

The last integral can, in turn, be approximated by a convenient approximating sum
with step size 1/(a + b + n):

f’””‘“ Jap(tuiy) + fabuigrr) + -+ fap(tury) +0a/n)
In

far®)dt = atb+n

ko

(The O(1/n) assertion holds because the integrand f, () has bounded first deriva-
tive.) Now (7) implies that

fab(tnk) 2
Jabink? _p o 1+0(1
a+b+n w01/

for all k, which in turn gives

fa,b(tn,ko) +- 4+ fa,b(tn,kM)
a+b+n

=Puky + Puggr1 + -+ Pusy + M- 0 (1/0%) + 0(1/n)
=Puiy + Pokgr1 + -+ Pugy, +0(/n),

and (6) follows.

Great expectations Next we find expected values of S, and 6,; perhaps surprisingly,
we can do so without recourse to their explicit distributions, given in (2). First we write
S, = S,_1 + X,,, where X,, is 1 if the nth shot hits and 0 otherwise. Then we have

n—1
PX, =1 =) P(X,=1]8-1=kP(S,-1 =k
k=0
n—1
a+k
= —P(S,-1 =k
;a+b+n~—l( : )

a Y PO, =k + Y kP(S,i =k a+P(S,_)

= . 8
at+b+n-—1 a+b+n-1 ®)
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Thus,

P(Sy) = P(8u-1) + P(Xs) =P(Sp-) + P(X, = 1)

a+P(S,-1) a a+b+n
= PS,-) —— .
a+b+n-—1 a+b+n—1+ ( 1)a+b+n—1

= P(S,-1) +

Now clearly E(Sp) = 0, and it follows by induction that

na
P(S,) =
(5) a+b

for n > 0. The expected value of 6, is readily found—and seen to be constant:

a+P(s,) a+ 5 _a
a+b+n a+b+n a+b

P(Gn) =

In particular, (8) shows that

a
a+b

P(X, =1)=Pl,-1) =

That P(X, = 1) is constant recalls the earlier Bayesian “no free lunch” result, in
which averaging over all possible outcomes did not produce new knowledge. Here,
too, Shanille’s initial success probability—a/(a + b)—remains unaltered as we imag-
ine future outcomes.

Another way to think of this is to imagine a large number, M, of Shanille-clones,
each starting with a hits and b misses and hence an initial a/(a 4+ b) success prob-
ability. Thereafter, each Shanille updates her own probability by the GPP rule. At
each stage the distribution of all M Shanilles’ success probabilities is as described in
Proposition 2, but the group’s average success probability remains at a/(a + b), and
its expected number of hits is Ma/(a + b). After many stages, the distribution of the
individual success probabilities strongly resembles a Beta(a, b) distribution.

Bayesian basketball Finally, we consider the Bayesian Beta—Binomial Basketball
Putnam Problem (BBBPP):

Shanille O’Keal, now a converted Bayesian, shoots free throws. Starting with a
Beta distribution, at each stage she draws a value of 6 from the distribution and,
with success probability, shoots a basket and then updates her distribution by the
beta-binomial method. Describe the marginal distributions of 6, and of S,, her
success probability and total number of successes after n shots.

The BBBPP extends the GPP in several senses. First, the GPP starting points, a hits
and b misses, mirror the initial Beta parameters a and b. Second, while the GPP
Shanille is certain of her success probability at each stage, the BBBPP Shanille has
less certainty—but she could always return to her GPP ways by replacing the random
draw of 6, with its expected value at each stage.

In the BBBPP setting S, and 8, have a new relationship: S, is still a discrete random
variable, but 6, is now a continuous random variable that describes Shanille’s skill.
Now S, is conditioned on 6, for 0 < k < n, and 6, is conditioned on S,. Each 6; is
obtained by a beta-Bernoulli update of 6;_;.

We might seem to have traded the relatively simple discrete GPP, with its single
discrete random variable S,,, for a more complex BBBPP, with two intertwined random
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variables, one discrete and the other continuous. The bargain is better than it might
seem—properties of the beta—binomial and of the Bayesian scheme turn out to simplify
our solution. For instance, we can replace the sequence 6y, 6,, . . ., 6, of beta-Bernoulli
updates with a single beta—binomial, starting with 6, and producing 6,.

The marginal distribution of 6, follows from the “no free lunch” principle: The
marginal posterior and the prior distribution are identical. Thus, for all n, the success
probability 6, has marginal posterior distribution Beta(a, b), and E(8,) = a/(a + b).
In the GPP, by comparison, the distributions of 6, approximate the Beta(a, b) distribu-
tion for large n, and E(6,) = a/(a + b) for all n.

Consider, in particular, the noninformative (uniform) Beta(1, 1) prior distribution.
Averaging over all possible outcomes assures that, at the nth stage, all values of 6,
remain equally likely. This brings the original PP to mind: All values 6, for the updated
success probability are equally likely at each stage.

Now we consider S,. For the GPP the distribution of S,, found in Proposition 2,
is identical to the predictive posterior of a Beta(a, b) prior, shown in (4). The same
result holds for the BBBPP, but here the connection is more natural. A sequence of n
Bernoulli updates is equivalent, as shown earlier, to a single binomial update with n
trials. The probability we seek, P(S, = k), was found in (4):

P(S, = k) — n) Fa+b)Ta+kC'(b+n—k)
" T \kJ)T@r®)  T@+b+n)
It follows that E(S,) = na/(a + b) for all n, as in the GPP.

Conclusion

Here we end our tour of Shanille’s basketball adventures and our detour through
Bayesian statistics. We explored the GPP, a problem in probability, by “embedding”
it in a Bayesian context. The embedding amounts, essentially, to replacing a fixed 6
with a random variable with expectation 6. Almost every property of the fixed-6 case
is reflected in a property of the variable-6 setting. The embedding helped reveal some
interesting properties of the GPP and links to Bayesian principles, such as the “no free
lunch” property.

Finally, a confession: Even the BBBPP smacks more of probability than of Bayesian
statistics at its purest. To a fully committed Bayesian, what changes over successive
free throw attempts is not really Shanille’s success probability, as the BBBPP implies.
Shanille’s skill remains unchanged throughout—only our belief is knowable, and sub-
ject to updating. For Bayesians, it’s all about belief.
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